题意:

  有n个玩具,要将它们分为若干组,玩具长度C可能不同。给出n个玩具的摆放顺序,连续的任意多个玩具都可以成为一组。区间[i,j]成为一组的费用是cost=(j-i+Sigma(Ck)-L)2且i<=k<=j。给定n和L和每个玩具的长度,问分组后费用总和是多少? (n<=5*104)。

思路:

  转移方程:dp[i]=min( dp[j]+(sum[i]-sum[j]+i-j+1-L)2  )。sum[i]表示前i件玩具长度的总和,0<j<i,(i-j+1)表示与i同组的玩具个数。

  根据方程是可以推出这题是满足决策单调性的。以下是抄来的证明,稍微修改:

  令f[i]=sum[i]+i, c=1+L,则dp[i]=min( dp[j]+(f[i]-f[j]-c)2  )

  1.证明决策单调性

  假设在状态i处的k决策优于j决策,且j<k,那么 dp[k]+(f[i]-f[k]-c)2<=dp[j]+(f[i]-dp[j]-c)2

  而对于i后面的某个状态t,设f[t]=f[i]+v,先不管v是多少。

  要证明:dp[k]+(f[t]-f[k]-c)2<=dp[j]+(f[t]-f[j]-c)2

  只要证(将f[t]=f[i]+v代入):dp[k]+(f[i]+v-f[k]-c)2<=dp[j]+(f[i]+v-f[j]-c)2

  只要证dp[k]+(f[i]-f[k]-c)2+2v*(f[i]-f[k]-c)+v2  <=  dp[j]+(f[i]-f[j]-c)2+2v*(f[i]-f[j]-c)+v2

  由于假设,所以只要证: 2v*(f[i]-f[k]-c)<=2v*(f[i]-f[j]-c)。

  即证:f[k]>=f[j](显然)

  证明完毕

  思路很明确,一直卡在二分上面,噗。

  用一个队列来维护这些区间段,由于区间段必定是连在一起的,所以只需要记录左端点L以及更新这个区间的决策k。如果队列为空,则后面全部由i来更新得到,若非空,那么判断队尾的L,是否由i来更新会更优,若是,则pop掉队尾,继续同样的动作,直到队列为空或者i作为决策不如队尾的L更好,那么i可以更新的就是[L,n]之中的尾部区间[r,n],而r可以用二分查找的方式。细节上很容易写挫,比如i决策可能完全都可以用武之地,不用二分去找了,否则会错;二分时必定要保证r由i来更新更佳,且有可能会出现等于的情况。复杂度O(nlogn),斜率优化等再写。

 //#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <deque>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define back que[rear-1]
#define INF 0x7f7f7f7f
#define LL long long
#define ULL unsigned long long
using namespace std;
const double PI = acos(-1.0);
const int N=; LL len[N], dp[N], L;
int q[N], d[N], n, l, r; //区间以及决策
LL cost(int j,int i) //用j来更新i的费用
{
return dp[j]+(len[i]-len[j]-L)*(len[i]-len[j]-L);
} int find(int i,int k,int st)
{
int ll=st, rr=n;
while(ll<rr)
{
int mid=rr-(rr-ll+)/;
if( cost(i,mid)<cost(k,mid)) rr=mid;
else ll=mid+;
}
return rr;
}
LL cal()
{
l=r=;
d[]=;q[]=; //初始时,0可以更新[1,n]
for(int i=; i<=n; i++)
{
dp[i]=cost(d[l], q[l]++); //q[l]永远等于i
if( l<r && q[l]==q[l+] ) l++; while( l<=r && cost(i,q[r])<cost(d[r],q[r]) ) r--;
if(l>r) //只能用i来更新
{
q[++r]=i+;
d[r]=i;
}
else if( cost(i,n)<cost(d[r],n))
{
int tmp=find(i, d[r], q[r]);
q[++r]=tmp;
d[r]=i;
}
}
return dp[n];
} int main()
{
//freopen("input.txt","r",stdin);
while(~scanf("%d%lld",&n,&L))
{
L++;len[]=;
for(int i=; i<=n; i++)
{
scanf("%lld",&len[i]);
len[i]+=len[i-];
}
for(int i=; i<=n; i++) len[i]+=i;
printf("%lld\n", cal() );
}
return ;
}

AC代码

HYSBZ 1010 玩具装箱toy (决策单调DP)的更多相关文章

  1. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  2. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  3. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  4. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  5. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. BZOJ 1010 玩具装箱toy(斜率优化DP)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  8. bzoj 1010 玩具装箱toy -斜率优化

    P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 ...

  9. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

随机推荐

  1. excel批量提取网页标题

    最近时间比较忙,有时候很多网页需要临时保存,以便空闲的时候查看.单纯的保存网页链接会让人很枯燥,所以需要自动批量提取标题. 为了这个小功能去写个小程序有点不划算,所以就利用excel实现了这个功能. ...

  2. 第3章 编写ROS程序-2

    1.发布者程序 在本节中,我们将看到如何发送随机生成的速度指令到一个turtlesim海龟,使它漫无目的地巡游.这个程序的源文件称为pubvel,这个程序展示了从代码中发布消息涉及的所有要素. 其代码 ...

  3. POJ - 2349 ZOJ - 1914 Arctic Network 贪心+Kru

    Arctic Network The Department of National Defence (DND) wishes to connect several northern outposts ...

  4. WPF在ViewModel中绑定按钮点击(CommandBase定义)

    定义CommandBase public class CommandBase:ICommand { private readonly Action<object> _commandpara ...

  5. 在element-ui的表格组件中为表头添加Tooltip 文字提示

    在使用表格组件的时候经常遇到的问题,列数很多,而表头的文字描述长度很长 <el-table-column v-if="!column.event" v-for="( ...

  6. css border实现三角形

    实现过程: 正常的border <div class="box"></div> .box { background: #ddd; width: 100px; ...

  7. Unity5.5 Lighting Scene

    参考:https://docs.unity3d.com/Manual/GlobalIllumination.html Environment Lighting(环境光) Skybox: 天空盒材质,这 ...

  8. CF360E Levko and Game【贪心+dijsktra】

    先把所有边可动设为r[i]又这些边不是l就是r(如果想一个方向改变能更优的话就尽量多的改变),每次跑dijsktra,对于可动边(x,y),如果dis1[x]<=dis2[x],那么就把这条边改 ...

  9. Vue实现任务列表效果

    <!DOCTYPE html>            <html lang="en">            <head>            ...

  10. Posture Energy——姿态的能量

    人的生活是套路化的,人活得越久,被套路化的概率就越大.普通百姓的生活都如同一个模板刻出来的. 一旦生活微调,我们会突然发现原来几十年的认知有问题,如同重获新生的感觉.譬如:早起,当我们每天早起一小时, ...