1.数据结构

主要的数据结构有:1.Attribute List  2.Class List

对于数据集,每一个属性都有一个对应的Attribute List.如上图所示,每个Attribute List有两列,分别是对应的属性值和该条记录在Class List里的索引。根据不同的索引值,可以得到记录的类标。对于连续型的属性,Attribute List应当是有序的。

对于Class List,存储的是每条记录对应的类标以及记录所在的当前叶节点。Class List 需常驻内存当中。

2.算法过程

gini index:如果一个数据集D有n个不同的类,那么:

在属性A下,把数据集分为D1和D2,那么:

基尼增益定义:

算法思想:扫描全部的Attribute List.对于每一个不同的Attribute List,从上到下扫描,并计算以当前记录split所得出的基尼增益。从而求出最大基尼增益的属性和分裂点。

在对Attribute List 从上到下扫描时,需要用到另一种数据结构——类直方图。类直方图的行表分裂点的左边和右边,列代表不同的类。如上图所示,当算法扫描到Salary List的第一条记录时,首先根据index找到当前记录所属的叶子节点。可知,salary = 15时这条记录属于N2节点。当前N2节点有两条记录,类直方图初始化时默认这两条记录属于未分裂。所以,在N2节点中共有两条记录,分别是索引值1和索引值2的记录。在Class List中可知,这两条记录分别属于G类和B类。

算法在扫描到salary = 15这条记录时,实际上是在N2这个节点做了一次试探性的分裂,N2中salary<=15的记录归为左边,其余的归为右边。类直方图可变为:

从而可以根据这次分裂算得基尼增益:

依次向下扫描,分别得到每一次试探性分裂的基尼增益,选择基尼增益最大的分裂。比如,在N2节点中,选择salary = 15这条记录分裂所得的基尼增益最大,那么在该节点的分裂点就是(a1+a2)/2,也就是40.

算法在决定每一个当前叶子节点的分裂点之后,需要根据分裂点,更新Class List中每条记录所属的叶子节点。然后再次循环分裂。

[数据挖掘课程笔记]SLIQ算法的更多相关文章

  1. [数据挖掘课程笔记]关联规则挖掘 - Apriori算法

    两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...

  2. [数据挖掘课程笔记]基于规则的分类-顺序覆盖算法(sequential covering algorithm)

    Rule_set = {}; //学习的规则集初试为空 for 每个类c do repeat Rule = Learn_One_Rule(D,Att-vals,c) 从D中删除被Rule覆盖的元组; ...

  3. 数据挖掘学习笔记--AdaBoost算法(一)

    声明: 这篇笔记是自己对AdaBoost原理的一些理解,如果有错,还望指正,俯谢- 背景: AdaBoost算法,这个算法思路简单,但是论文真是各种晦涩啊-,以下是自己看了A Short Introd ...

  4. [数据挖掘课程笔记]无监督学习——聚类(clustering)

    什么是聚类(clustering) 个人理解:聚类就是将大量无标签的记录,根据它们的特点把它们分成簇,最后结果应当是相同簇之间相似性要尽可能大,不同簇之间相似性要尽可能小. 聚类方法的分类如下图所示: ...

  5. [数据挖掘课程笔记]人工神经网络(ANN)

    人工神经网络(Artificial Neural Networks)顾名思义,是模仿人大脑神经元结构的模型.上图是一个有隐含层的人工神经网络模型.X = (x1,x2,..,xm)是ANN的输入,也就 ...

  6. [数据挖掘课程笔记]Naïve Bayesian Classifier

    朴素贝叶斯模型 1) X:一条未被标记的数据 2) H:一个假设,如H=X属于Ci类 根据贝叶斯公式 把X表示为(x1,x2,....xn) x1,x2,....xn表示X在各个特征上的值. 假设有c ...

  7. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  8. 深度学习课程笔记(三)Backpropagation 反向传播算法

    深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...

  9. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

随机推荐

  1. nginx实现反向代理和负载均衡

    利用nginx做反向代理和负载均衡是减轻服务器压力的有效方式.nginx代理服务器接收多个客户端请求, 根据配置的参数均衡到每个tomcat服务器上,tomcat处理请求,返回响应结果给nginx,n ...

  2. 新华三孟丹:NFV资源池实现中的技术探讨

    近日,在第三届未来网络发展大会SDN/NFV技术与应用创新分论坛上,新华三解决方案部架构师孟丹女士发表了主题为<NFV资源池实现中的技术探讨>的主题演讲. 孟丹指出,新华三的NFV核心理念 ...

  3. Java面向对象--static关键字

  4. IIS下安装memcached管理工具—MemAdmin

    1.先看这篇文章 http://www.cnblogs.com/joylee/archive/2013/01/07/memadmin.html . 2.在IIS下安装的php-cgi.exe程序版本为 ...

  5. 这道js面试题号称99%的人会做错

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. NN优化方法对照:梯度下降、随机梯度下降和批量梯度下降

    1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值 ...

  7. JavaScript 推断浏览器类型及32位64位

    JS推断出版本号以及浏览器类型 <script type="text/javascript"> var Sys = {}; var ua = navigator.use ...

  8. 在.NET中怎样取得代码行数

    文章目的 介绍在.NET中取得代码行数的方法 代码 [STAThread] static void Main(string[] args) { ReportError("Yay!" ...

  9. C++11 并发指南一(C++11 多线程初探)(转)

    引言 C++11 自2011年发布以来已经快两年了,之前一直没怎么关注,直到最近几个月才看了一些 C++11 的新特性,今后几篇博客我都会写一些关于 C++11 的特性,算是记录一下自己学到的东西吧, ...

  10. GTK入门学习:布局练习之计算器

    接下来,我们做一个布局练习.例如以下图: 我们用表格布局实现,表格布局參考坐标例如以下: 这里我们用到行编辑控件( GtkEntry ). 行编辑的创建: GtkWidget * gtk_entry_ ...