思路

  • “恰k个”考虑求至少k、k+1……个容斥
  • 题面说所有数字都不同,可以将所求转化为糖比药多的组数恰为\((n+k)/2\)的方案数
  • \(f[i][j]\)数组我觉得更好的理解方式是"前i个已经安排了j组糖大于药、别的先没管"的方案数
  • \(f[n][i]*(n-i)!\)即为把其它的安排了以后的方案数,但是这里面有重的
  • 设\(g[i]\)为恰i个的方案数。$$g[i]=f[n][i]*(n-i)!-\sum_{j=i+1}ng[j]*C_ji$$要说为什么又去重又剪掉不合法了,我也不通透,目前只是已知这样做是对的话那直观感受一下应该对吧……
#include <cstdio>
#include <algorithm>
using namespace std; typedef long long ll;
const int mod = 1e9 + 9;
const int maxn = 2005; int n, k, m, ans;
int a[maxn], b[maxn];
ll f[maxn][maxn], g[maxn];
ll fac[maxn], C[maxn][maxn]; int READ() {
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
scanf("%d", &b[i]);
m = (n + k) / 2;
return (n + k) % 2;
} void PRE() {
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n); fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod; for (int i = 0; i <= n; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}
} void DP() {
for (int i = 0; i <= n; i++)
f[i][0] = 1;
for (int i = 1, p = 0; i <= n; i++) {
for (; p < n && b[p + 1] < a[i]; p++);
for (int j = 1; j <= i; j++) {
f[i][j] = (f[i - 1][j - 1] * max(0, p - j + 1) % mod + f[i - 1][j]) % mod;
}
}
for (int i = n; i >= m; i--) {
g[i] = f[n][i] * fac[n - i] % mod;
for (int j = i + 1; j <= n; j++) {
g[i] = (g[i] - g[j] * C[j][i] % mod) % mod;
}
}
ans = (g[m] + mod) % mod;
} int main() {
if (READ() == 1) {
return !printf("0\n");
}
PRE();
DP();
return !printf("%d\n", ans);
}

BZOJ3622(容斥+dp)的更多相关文章

  1. 【BZOJ3622】已经没有什么好害怕的了 容斥+DP

    [BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...

  2. HDU 5794 A Simple Chess (容斥+DP+Lucas)

    A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...

  3. [CF1086E]Beautiful Matrix(容斥+DP+树状数组)

    给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...

  4. $bzoj2560$ 串珠子 容斥+$dp$

    正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...

  5. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  6. 【XSY3156】简单计数II 容斥 DP

    题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...

  7. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  8. AGC 005D.~K Perm Counting(容斥 DP 二分图)

    题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...

  9. ARC 101E.Ribbons on Tree(容斥 DP 树形背包)

    题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...

随机推荐

  1. BZOJ 1626 [Usaco2007 Dec]Building Roads 修建道路:kruskal(最小生成树)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1626 题意: 有n个农场,坐标为(x[i],y[i]). 有m条原先就修好的路,连接农场( ...

  2. redis持久化【转】

    Redis是一种高级key-value数据库.它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富.有字符串,链表,集 合和有序集合.支持在服务器端计算集合的并,交和补集(diff ...

  3. RabbitMQ消息队列随笔

    本文权当各位看官对RabbitMQ的基本概念以及使用场景有了一定的了解,如果你还对它所知甚少或者只是停留在仅仅是听说过,建议你先看看这篇文章,在对RabbitMQ有了基本认识后,我们正式开启我们的Ra ...

  4. EVC入门之二: 在未被加载的DLL中设置断点 (虽然没有遇到这个问题,不过先摘抄下来)

    问题: 这个问题居然也郁闷了我一段时间. 我们假设在EVC里建立了一个project, 里面有SubProject_1(以下简称SB1,嘿嘿), 编译生成一个EXE; SubProject_2(以下简 ...

  5. kettle脚本定时任务不执行

    问题描述:在centos机器上部署了kettle脚本,每天定时跑一次,但是并没有成功跑,手动执行命令是可以的.而且写了一个测试的shell脚本也是可以执行的. 解决方案: 将2的错误输出,/usr/l ...

  6. C++之MutexLock和MutexLockGuard封装

    noncopyable.h #ifndef __WD_NONCOPYABLE_H__ #define __WD_NONCOPYABLE_H__ namespace wd { class Noncopy ...

  7. BZOJ4016:[FJOI2014]最短路径树问题

    浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem. ...

  8. mac下nginx的安装

    新手初学,按照网上的教程,一步一步来进行安装.把自己的安装流程贴出来. 1 安装nginx需要三方的lib库pcre.因此先下载pcre. 在这里,需要注意的是安装的pcre的版本要与nginx对应. ...

  9. RT-Thread RTOS

    RT-ThreadRTOS是一款来自中国的开源实时操作系统,由RT-Thread工作室的专业开发人员开发.维护. 起初RT-Thread是一个实时的内核(全抢占优先级调度,调度器时间复杂度O(1)), ...

  10. sql 的基础语句

    USE day15; -- 创建表CREATE TABLE teacher( id INT, NAME VARCHAR(20))-- 查看所有表SHOW TABLES; DESC student; D ...