BZOJ3622(容斥+dp)
思路
- “恰k个”考虑求至少k、k+1……个容斥
- 题面说所有数字都不同,可以将所求转化为糖比药多的组数恰为\((n+k)/2\)的方案数
- \(f[i][j]\)数组我觉得更好的理解方式是"前i个已经安排了j组糖大于药、别的先没管"的方案数
- \(f[n][i]*(n-i)!\)即为把其它的安排了以后的方案数,但是这里面有重的
- 设\(g[i]\)为恰i个的方案数。$$g[i]=f[n][i]*(n-i)!-\sum_{j=i+1}ng[j]*C_ji$$要说为什么又去重又剪掉不合法了,我也不通透,目前只是已知这样做是对的话那直观感受一下应该对吧……
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 9;
const int maxn = 2005;
int n, k, m, ans;
int a[maxn], b[maxn];
ll f[maxn][maxn], g[maxn];
ll fac[maxn], C[maxn][maxn];
int READ() {
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%d", &a[i]);
for (int i = 1; i <= n; i++)
scanf("%d", &b[i]);
m = (n + k) / 2;
return (n + k) % 2;
}
void PRE() {
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n);
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % mod;
for (int i = 0; i <= n; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}
}
void DP() {
for (int i = 0; i <= n; i++)
f[i][0] = 1;
for (int i = 1, p = 0; i <= n; i++) {
for (; p < n && b[p + 1] < a[i]; p++);
for (int j = 1; j <= i; j++) {
f[i][j] = (f[i - 1][j - 1] * max(0, p - j + 1) % mod + f[i - 1][j]) % mod;
}
}
for (int i = n; i >= m; i--) {
g[i] = f[n][i] * fac[n - i] % mod;
for (int j = i + 1; j <= n; j++) {
g[i] = (g[i] - g[j] * C[j][i] % mod) % mod;
}
}
ans = (g[m] + mod) % mod;
}
int main() {
if (READ() == 1) {
return !printf("0\n");
}
PRE();
DP();
return !printf("%d\n", ans);
}
BZOJ3622(容斥+dp)的更多相关文章
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- 【XSY3156】简单计数II 容斥 DP
题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- AGC 005D.~K Perm Counting(容斥 DP 二分图)
题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...
- ARC 101E.Ribbons on Tree(容斥 DP 树形背包)
题目链接 \(Description\) 给定一棵\(n\)个点的树.将这\(n\)个点两两配对,并对每一对点的最短路径染色.求有多少种配对方案使得所有边都至少被染色一次. \(n\leq5000\) ...
随机推荐
- laravel基础课程---8、laravel响应和视图(响应是什么)
laravel基础课程---8.laravel响应和视图(响应是什么) 一.总结 一句话总结: 就是向请求返回的响应数据(一般为html(视图),当然也可以是变量值):所有的路由及控制器必须返回某个类 ...
- python做图笔记
1. 工具选择 了解了基本python,rodeo,anaconda套件这三种工具. (1)基本python,下载安装python的最新版(目前是python3.7).注意要使用安装版.安装好后,一般 ...
- nginx rewrite 导致验证码不正确
配置nginx里url rewrite的时候,为了使浏览器地址栏的URL保持不变, 使用proxy_pass反向代理,但发现每次都会生成新的jsessionid 解决方法,配置中增加 proxy_co ...
- java面试题05
1.写一个冒泡排序的算法 升序排列: public static void main(String[] args) { int score[] = { 67, 20, 75, 87, 89, 90, ...
- html制作细线表格
关于这个细线表格的制作方法,百度一下可能就会有答案告诉你设置这几个值:给table设置border="0" cellspacing="1" bgcolor=&q ...
- ACM学习历程—Hihocoder编程之美测试赛B题 大神与三位小伙伴(组合数学 )
时间限制:2000ms 单点时限:1000ms 内存限制:256MB 描述 给你一个m x n (1 <= m, n <= 100)的矩阵A (0<=aij<=10000),要 ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- C# Json库 和 xml 序列化反序列化 存在的问题
json 正常情况下不会对私有成员进行序列化和反序列化, 因此在用json做深拷贝时, 就会丢失数据. 解决办法: 声明成公有成员. json在序列化和反序列化时, 如果类中有IComma ...
- 蓝桥杯Log大侠(线段树单点区间更新)
标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: ...
- POJ3159(最短路)
Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 27051 Accepted: 7454 Descrip ...