看这道题的时候,感觉很难,因为数据范围比较大,很难dp;

后来想到了【书柜的尺寸】这道题,也是一道dp,曾经看了那道题的题解而深有启发;

这道题每组的付费只与这一组长宽的最大值有关,也就是说要分组,一定从按长或宽的从大到小(从小到大也可以)排序,这样剔除无用的数据后,就只剩下一串数据,长从大到小,宽从小到大;

然后我们要在这里面分组,可以轻易发现,一个组的成员一定是连续的,原因与单调性有关;

这样就成了经典的dp,加上一个斜率优化即可轻松水过;

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int maxn=;
#define LL long long
int n,q[maxn];
struct node{
int x,y;
bool operator<(const node& c)const{return (x>c.x)||(x==c.x&&y>c.y);}
}a[maxn],b[maxn];
LL f[maxn];
double col(int j,int k){return double(f[k]-f[j])/double(b[j+].x-b[k+].x);}
void init(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
sort(a+,a+n+);int head=,tail=;
b[++tail]=a[];
for(int i=;i<=n;i++)if(a[i].y>b[tail].y)b[++tail]=a[i];
n=tail;
head=,tail=;q[++tail]=;
for(int i=;i<=n;i++){
while(head<tail&&col(q[head],q[head+])<=b[i].y)head++;
f[i]=f[q[head]]+(LL)b[q[head]+].x*b[i].y;
while(head<tail&&col(q[tail],i)<=col(q[tail],q[tail-]))tail--;
q[++tail]=i;
}
cout<<f[n]<<endl;
}
int main(){
init();
}

土地购买 usaco 斜率优化的更多相关文章

  1. BZOJ1597土地购买 【斜率优化DP】

    BZOJ1597土地购买 [斜率优化DP] Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足( ...

  2. 土地购买 (斜率优化dp)

    土地购买 (斜率优化dp) 题目描述 农夫 \(John\) 准备扩大他的农场,他正在考虑$ N(1 \leqslant N \leqslant 50,000)$ 块长方形的土地. 每块土地的长宽满足 ...

  3. [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)

    Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...

  4. 【BZOJ-1597】土地购买 DP + 斜率优化

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2931  Solved: 1091[Submit] ...

  5. 【BZOJ 1597】 [Usaco2008 Mar]土地购买 (斜率优化)

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3601  Solved: 1322 Descrip ...

  6. BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )

    既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...

  7. BZOJ 1597: [Usaco2008 Mar]土地购买【斜率优化+凸包维护】

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4989  Solved: 1847[Submit] ...

  8. 【bzoj1597- [Usaco2008 Mar]土地购买】斜率优化

    [597][Usaco2008 Mar]土地购买 [题目描述] 有N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000 ...

  9. BZOJ 1597 [Usaco2008 Mar]土地购买:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1597 题意: 有n块矩形土地,长为a[i],宽为b[i]. FJ想要将这n块土地全部买下来 ...

随机推荐

  1. 共享内存 share pool (2):BUCKET /FREE LISTS /RESERVED FREE LISTS /UNPINNED RECREATABLE CHUNKS (lru first)

    相关概念 BUCKET :每个bucket上挂有一个 chunk list.同一个BUCKET中的chunk在物理地址上是不一定相邻的 FREE LISTS:按bucket划分,共有255个,buck ...

  2. vim之旅

    本人是今年的毕业生, 大学很莫名的选择了一个电子商务专业. 由于专业没有实质性的东西可学,加上对电商不敢兴趣, 于是乎我有了大量的时间在宿舍里折腾电脑. 折腾了几年大三决定转业, 大四在还没找工作之前 ...

  3. Python开发【第一篇】Python基础之字符串格式化

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-310 ...

  4. python 使用联动优势支付接口的sign与verify

    直接上代码 if options.umpay_private_key is not None and len(options.umpay_private_key) > 0: try: with ...

  5. flask学习

    安装环境: centos 6.3 python2.6 使用easy_install安装方式: [root@localhost ~]# easy_install flask 简单的hello from  ...

  6. automapper的简单用法

    AutoMapper对象转换方面(Object-Object Mapping)对象映射工具,实现对象和对象之间的转化.主要应用在项目的dto,model,entity或viewmodel之间转换,其实 ...

  7. Spring的IoC应用

    IoC(Inversion of Control,控制反转) Spring的IoC应用是其框架的最大的特点,通过依赖注入可以大大降低代码之间的耦合度,从而实现代码和功能之间的分离.在代码中可以不直接和 ...

  8. hdu 1890 Robotic Sort

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1890 如下: #include<cstdio> #include<cstdlib&g ...

  9. 人脸检测的API例子

    package cliu.TutorialOnFaceDetect; /* * MyImageView.java * Download by http://www.codefans.net * [AU ...

  10. Oracle12C的EM无法访问怎么办?

    装完Oracle 12c,想体验下EM Express,缺发现不能用,应该怎么办?12c的EM 不再像以前版本配置那么麻烦,当然提供的功能也没有那么多了,只需要启用对应端口即可,请看:To manua ...