题意

给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 998244353\) 。

\(n, a_i \le 10^6\)

题解

简单转化一下,其实就是对于每个选取集合中元素异或积为 \(0\) 的集合,都会有 \(2^{|S|}\) 的贡献。

用集合幂级数形式写出来其实就等价于:

\[\prod_{i = 1}^{n} (1 + 2x^{a_i})
\]

把每个 \(\text{FWT}\) 再乘显然不现实。观察一下 \(1 + 2x^{a_i}\) \(\text{FWT}\) 后的点值只可能是 \(\{-1, 3\}\) 。

这样我们把所有原来的幂级数相加,然后一起 \(\text{FWT}\) 。(因为 \(\text{FWT}\) 是可以满足点值上的加减乘除,与集合对称差卷积上的加减乘除是一样的)

然后每一位算一下,假设有 \(x\) 个 \(-1\) ,\(n - x\) 个 \(3\) 。考虑解一下这个方程,也就是 \(-x + 3 * (n - x) = f_i\) ,也就是 \(\displaystyle x = \frac {3n - f_i}{4}\) 。

那么所有一开始的幂级数 \(\text{FWT}\) 乘到一起其实也就是 \((-1)^x3^{n - x}\) 。

那么最后 \(\text{IFWT}\) 就行了。

最后要减去空集的贡献,注意要 + Mod - 1 (好多人被坑了 \(97pts\) )。

复杂度是 \(\mathcal O(n \log n)\) 的。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; typedef long long ll; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("310.in", "r", stdin);
freopen ("310.out", "w", stdout);
#endif
} const int len = 1 << 20, N = len << 1, Mod = 998244353, inv2 = (Mod + 1) / 2; inline int fpm(int x, int power) {
int res = 1;
for (; power; power >>= 1, x = 1ll * x * x % Mod)
if (power & 1) res = 1ll * res * x % Mod;
return res;
} void FWT(ll *P, int opt) {
for (int i = 2, p = 1; i <= len; p = i, i <<= 1)
for (int j = 0; j < len; j += i) Rep (k, p) {
ll u = P[j + k], v = P[j + k + p];
P[j + k] = u + v; P[j + k + p] = u - v;
}
if (!~opt) {
int inv = fpm(len, Mod - 2);
Rep (i, len) P[i] = 1ll * (Mod + P[i] % Mod) * inv % Mod;
}
} ll A[N], pow3[N]; int main () { File(); int n = read(); pow3[0] = 1;
For (i, 1, n)
++ A[0], A[read()] += 2, pow3[i] = pow3[i - 1] * 3ll % Mod; FWT(A, 1);
Rep (i, len) {
int x = (3 * n - A[i]) / 4;
A[i] = (Mod + (x & 1 ? -1 : 1) * pow3[n - x]) % Mod;
}
FWT(A, -1); printf ("%lld\n", (A[0] + Mod - 1) % Mod); return 0; }

UOJ#310.【UNR #2】黎明前的巧克力(FWT)的更多相关文章

  1. 【uoj#310】[UNR #2]黎明前的巧克力 FWT

    题目描述 给出 $n$ 个数,从中选出两个互不相交的集合,使得第一个集合与第二个集合内的数的异或和相等.求总方案数. 输入 第一行一个正整数 $n$ ,表示巧克力的个数.第二行 $n$ 个整数 $a_ ...

  2. uoj310【UNR #2】黎明前的巧克力(FWT)

    uoj310[UNR #2]黎明前的巧克力(FWT) uoj 题解时间 对非零项极少的FWT的优化. 首先有个十分好想的DP: $ f[i][j] $ 表示考虑了前 $ i $ 个且异或和为 $ j ...

  3. UOJ #310 黎明前的巧克力 FWT dp

    LINK:黎明前的巧克力 我发现 很多难的FWT的题 都和方程有关. 上次那个西行寺无余涅槃 也是各种解方程...(不过这个题至今还未理解. 考虑dp 容易想到f[i][j][k]表示 第一个人得到巧 ...

  4. UOJ#310 【UNR #2】黎明前的巧克力 FWT 多项式

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ310.html 题目传送门 - UOJ#310 题意 给定 $n$ 个数 ,请你选出两个不相交的集合(两个 ...

  5. UOJ#310. 【UNR #2】黎明前的巧克力(FWT)

    题意 题目链接 Sol 挂一个讲的看起来比较好的链接 然鹅我最后一步还是没看懂qwq.. 坐等SovietPower大佬发博客 #include<bits/stdc++.h> using ...

  6. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  7. UOJ #310 黎明前的巧克力 (FWT)

    题目传送门 题目大意:给你一个序列,定义一个子序列的权值表示子序列中元素的异或和,现在让你选出两个互不相交的子序列,求选出的这两个子序列权值相等的方案数,$n,a_{i}\leq 10^{6}$ 这是 ...

  8. UOJ310. 【UNR #2】黎明前的巧克力 [FWT]

    UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...

  9. [UOJ310][UNR #2]黎明前的巧克力

    uoj description 给你\(n\)个数,求从中选出两个交集为空的非空集合异或和相等的方案数模\(998244353\). sol 其实也就是选出一个集合满足异或和为\(0\),然后把它分成 ...

  10. [FWT] UOJ #310. 【UNR #2】黎明前的巧克力

    [uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...

随机推荐

  1. jquery获取内容和属性的方法

    通过jquery如何捕获文本内容和属性? text(),html(),val()及attr(). attr()更具有普遍性,元素text属性和表单value属性,可以通过attr()操作. <! ...

  2. EntityFramework实体默认值遇到Oracle自增主键

    1. Oracle实现主键自动增长 一般我们在Oracle实现主键自动增长,通常通过序列加触发器实现. 定义序列用于获取递增数字 CREATE SEQUENCE 序列名 [INCREMENT BY n ...

  3. QT使用websocket进行长连接

    一般我们用的最多的就是http请求,但是频繁的请求可能对服务造成的压力很大,所以今天谈谈websocket长连接,一句话:简单 1.什么是长连接? A:一次请求连接,终身使用,就可以长久的保持信息的交 ...

  4. AjaxPro2完整入门教程

    一.目录 简单类型数据传送(介绍缓存,访问Session等) 表类型数据传送 数组类型数据传送(包含自定义类型数据) 二.环境搭建 1.这里本人用的是VS2012. 2.新建一个空的Web项目(.NE ...

  5. Linux内核的冷热缓存

    缓存为什么会有冷热? 究其原因,是因为对于内存的访问,可能是CPU发起的,也可以是DMA设备发起的. 如果是CPU发起的,在CPU的硬件缓存中,就会保存相应的页内容.如果这个页本来没有存在于硬件缓存中 ...

  6. luajit官方性能优化指南和注解

    luajit是目前最快的脚本语言之一,不过深入使用就很快会发现,要把这个语言用到像宣称那样高性能,并不是那么容易.实际使用的时候往往会发现,刚开始写的一些小test case性能非常好,经常毫秒级就算 ...

  7. win8.1 AMD 屏幕亮度无法调整

    lenovo z465  AMD处理器. win8.1 pro系统   屏幕亮度无法调整解决办法:   1:当然是先去本地服务里禁用"Sensor Monitoring Service&qu ...

  8. sqlserver日期函数大全

    一,统计语句 1, - 统计当前[>当天00点以后的数据] SELECT * FROM 表 WHERE CONVERT(Nvarchar, dateandtime, 111) = CONVERT ...

  9. rabbitMQ、activeMQ、zeroMQ、Kafka、Redis 比较

    Kafka作为时下最流行的开源消息系统,被广泛地应用在数据缓冲.异步通信.汇集日志.系统解耦等方面.相比较于RocketMQ等其他常见消息系统,Kafka在保障了大部分功能特性的同时,还提供了超一流的 ...

  10. npm:Fatal error in , line 0 #unreachable code 解决

    是nodejs环境本身的问题,下载nodejs执行repair即可