P1273 有线电视网
题目描述
某收费有线电视网计划转播一场重要的足球比赛。他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点。
从转播站到转播站以及从转播站到所有用户终端的信号传输费用都是已知的,一场转播的总费用等于传输信号的费用总和。
现在每个用户都准备了一笔费用想观看这场精彩的足球比赛,有线电视网有权决定给哪些用户提供信号而不给哪些用户提供信号。
写一个程序找出一个方案使得有线电视网在不亏本的情况下使观看转播的用户尽可能多。
输入输出格式
输入格式:
输入文件的第一行包含两个用空格隔开的整数N和M,其中2≤N≤3000,1≤M≤N-1,N为整个有线电视网的结点总数,M为用户终端的数量。
第一个转播站即树的根结点编号为1,其他的转播站编号为2到N-M,用户终端编号为N-M+1到N。
接下来的N-M行每行表示—个转播站的数据,第i+1行表示第i个转播站的数据,其格式如下:
K A1 C1 A2 C2 … Ak Ck
K表示该转播站下接K个结点(转播站或用户),每个结点对应一对整数A与C,A表示结点编号,C表示从当前转播站传输信号到结点A的费用。最后一行依次表示所有用户为观看比赛而准备支付的钱数。
输出格式:
输出文件仅一行,包含一个整数,表示上述问题所要求的最大用户数。
solution
树型DP——分组背包
转移方程
for(int j=min(num[cur],m);j;--j)
for(int k=min(num[ev],j-);k>=;--k)
DP[cur][j]=max(DP[cur][j],DP[cur][j-k-]+DP[ev][k]+e[i].w);//DP[cur][j]表示以cur为节点的子树选则j个节点时的收益
最后只用从大到小枚举j,容易证明DP[1][j]从大到小枚举j是单调不下降的,直到>=0跳出循环输出j就可以了
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=;
int n,m,EdgeCnt=;
int dp[N][N],val[N],a[N],t[N];
struct Edge{
int to,w,next;
}e[N*N];
int read(){
int x=,f=;char ch=getchar();
while (ch<'' || ch>''){if (ch=='-')f=-;ch=getchar();}
while (''<=ch && ch<=''){x=(x<<)+(x<<)+(ch^);ch=getchar();}
return x*f;
}
void addedge(int u,int v,int w){
int p=++EdgeCnt;
e[p].to=v;e[p].w=w;e[p].next=a[u];
a[u]=p;
}
int dfs(int u){
if (u>n-m){
dp[u][]=val[u];
return ;
}
int sum=;
for (int p=a[u];p;p=e[p].next){
int v=e[p].to;
int tk=dfs(v);
for (int j=;j<=sum;j++)t[j]=dp[u][j];
for (int j=;j<=sum;j++)
for (int k=;k<=tk;k++)
dp[u][j+k]=max(dp[u][j+k],t[j]+dp[v][k]-e[p].w);
sum+=tk;
}
return sum;
}
int main(){
n=read(),m=read();
memset(dp,~0x3f,sizeof(dp));
for (int u=;u<=n-m;u++){
int size=read();
for (int j=;j<=size;j++){
int v=read(),w=read();
addedge(u,v,w);
}
}
for (int i=n-m+;i<=n;i++)
val[i]=read();
for (int i=;i<=n;i++)
dp[i][]=;
dfs();
for (int i=m;i>;i--)
if (dp[][i]>=){
printf("%d",i);
break;
}
return ;
}
P1273 有线电视网的更多相关文章
- 洛谷 P1273 有线电视网
2016-05-31 13:25:45 题目链接: 洛谷 P1273 有线电视网 题目大意: 在一棵给定的带权树上取尽量多的叶子节点,使得sigma(val[选择的叶子节点])-sigma(cost[ ...
- P1273 有线电视网(树形dp)
P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. ...
- 洛谷 P1273 有线电视网(树形背包)
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...
- 洛谷P1273 有线电视网 (树上分组背包)
洛谷P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节 ...
- 洛谷——P1273 有线电视网
P1273 有线电视网 题目大意: 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树 ...
- C++ 洛谷 P1273 有线电视网 题解
P1273 有线电视网 很明显,这是一道树形DP(图都画出来了,还不明显吗?) 未做完,持续更新中…… #include<cstdio> #include<cstring> ...
- 洛谷P1273 有线电视网 树上分组背包DP
P1273 有线电视网 )逼着自己写DP 题意:在一棵树上选出最多的叶子节点,使得叶子节点的值 减去 各个叶子节点到根节点的消耗 >= 0: 思路: 树上分组背包DP,设dp[u][k] 表示 ...
- Luogu P1273 有线电视网(树形dp+背包)
P1273 有线电视网 题面 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部 ...
- P1273 有线电视网(树形动规,分组背包)
题目链接: https://www.luogu.org/problemnew/show/P1273 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树 ...
随机推荐
- man帮助文档打印
这里不讨论大家都知道的man重定向的一般常用方法(col处理方法)$ man find | col -b > man_fine.txt [跟着我的思路走]假如您像我一样,直接使用如下命令导出fi ...
- 如何解决svn清理失败 不能更新 cleanup失败 cleanup乱码 更新乱码 svn更新提示清理 清理乱码不能清理 svn故障修复SVN cleanup 陷入死循环 svn cleanup时遇到错误怎么办
平时使用svn的过程中,有的时候由于自己操作故障或者系统原因,导致svn不能更新,提示cleanup也不能成功,陷入了死循环 原因是;svn的数据库队列原因 1,下载sqlite3.exe,googl ...
- Spring Boot (八)MyBatis + Docker + MongoDB 4.x
一.MongoDB简介 1.1 MongoDB介绍 MongoDB是一个强大.灵活,且易于扩展的通用型数据库.MongoDB是C++编写的文档型数据库,有着丰富的关系型数据库的功能,并在4.0之后添加 ...
- 第1章 背景 - Identity Server 4 中文文档(v1.0.0)
大多数现代应用程序或多或少看起来像这样: 最常见的互动是: 浏览器与Web应用程序通信 Web应用程序与Web API进行通信(Web应用程序自身 或 代表用户 与 Web API 通信) 基于浏览器 ...
- Java开发笔记(三十七)利用正则串分割字符串
前面介绍了处理字符串的常用方法,还有一种分割字符串的场景也很常见,也就是按照某个规则将字符串切割为若干子串.分割规则通常是指定某个分隔符,根据字符串内部的分隔符将字符串进行分割,例如逗号.空格等等都可 ...
- Vue UI:Vue开发者必不可少的工具
译者按: Vue开发工具越来越好用了! 原文: Vue UI: A First Look 译者: Fundebug 本文采用意译,版权归原作者所有 随着最新的稳定版本Vue CLI 3即将发布,是时候 ...
- Selenium自动化-CSS元素定位
接下来,开始讲解 CSS元素定位. CSS定位速度快,功能多,但是不能向上查找,比 xpath好用,是本人认为最好用的定位方式 大致用法总结: 具体使用仿上篇博客.http://www.cnblo ...
- Android连续点击多次事件的实现
有时候我们需要实现这样的场景,类似进入开发者模式,即多次点击后执行操作. 首先我们先看一个方法: System提供的一个静态方法arraycopy(),我们可以使用它来实现数组之间的复制. publi ...
- SVN拉取后撤销,恢复未拉取之前的状态
在做项目的时候,一不小心将服务器上的代码覆盖了本地的代码,本来可以使用log查看svn上的历史列表,然后选中某个选项,右键,点击revert to this vision来使代码恢复到任意一个版本. ...
- win10的react native 开发环境搭建,使用Android模拟器
1.打开cmd的管理员模式,win+X,选择命令提示符(管理员)即可,运行如下命令: @"%SystemRoot%\System32\WindowsPowerShell\v1.0\power ...