设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式.

证明: 若贮能函数 $W$ 满足 ``$\hat W({\bf F}{\bf Q})=W({\bf F})$ 对任意正交阵 ${\bf Q}$'', 则 $$\beex \bea p_{ij}({\bf F})&=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}\\ &=\cfrac{\p \hat W({\bf F}{\bf Q})}{\p f_{ij}}\\ &=\sum_{m,n}\cfrac{\p \hat W({\bf F}{\bf Q})}{\p z_{mn}}\cfrac{\p z_{mn}}{\p f_{ij}}\quad\sex{{\bf Z}={\bf F}{\bf Q}}\\ &=\sum_{m,n}p_{mn}({\bf F}{\bf Q})q_{jn}\delta_{mi}\\ &\quad\sex{z_{mn}=\sum_l f_{ml}q_{ln}\ra \cfrac{\p z_{mn}}{\p f_{ij}}=q_{jn}\delta_{mi}}\\ &=\sum_n p_{in}({\bf F}{\bf Q})q_{jn}. \eea \eeex$$ 于是 $$\bex {\bf P}({\bf F})={\bf P}({\bf F}{\bf Q}){\bf Q}^T. \eex$$ 又由 Piola 应力张量的定义 ${\bf P}=J\hat {\bf T}{\bf F}^{-T}$ 知 $$\beex \bea \hat {\bf T}({\bf F}){\bf F}^{-T}&=\hat{\bf T}({\bf F}{\bf Q})({\bf F}{\bf Q})^{-T}{\bf Q}^T\\ &=\hat{\bf F}({\bf F}{\bf Q}){\bf F}^{-T},\\ {\bf T}({\bf F})&=\hat{\bf T}({\bf F}{\bf Q}). \eea \eeex$$

[物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达的更多相关文章

  1. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  2. [物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件

    在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \ee ...

  3. [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件

    在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$ 证明: (1) ...

  4. [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减

    在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...

  5. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  6. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  7. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  8. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  9. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

随机推荐

  1. Java实现Sunday百万级数据量的字符串快速匹配算法

    背景       在平时的项目中,几乎都会用到比较两个字符串时候相等的问题,通常是用==或者equals()进行,这是在数据相对比较少的情况下是没问题的,当数据库中的数据达到几十万甚至是上百万千万的数 ...

  2. jQuery each、节点操作、动画演示、尺寸操作、扩展方法

    一.each 1.方式一:$.each(数组或者自定义对象,function(i,j){console.log(i,j)}) $.each(li,function(i,j){ console.log( ...

  3. 【Python 补充01】Python运算符

    Python运算符 举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. 1.算术运算符 + - * / # 加减乘除 % # 取模(返回除 ...

  4. ElasticSearch(八):elasticsearch.yml配置说明

    集群名称:cluster.name: my-application确保在不同的环境中的集群的名称不重复,否则,节点可能会连接到错误的集群上 节点名称:node.name: node-1默认情况下,当节 ...

  5. [APIO2014]序列分割

    嘟嘟嘟 复习一下斜率优化,感觉已经忘得差不多了-- 这题切入点在与答案跟切的顺序无关. 证明就是假如有三段权值分别为\(x, y, z\),那么这两刀不管按什么顺序切,得到的结果都是\(xy + xz ...

  6. pip 升级 pip

    For Python2 sudo pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ --upgrade pip For Python3 ...

  7. 百度杯”CTF比赛 九月场 123

    进去后让登录,先看源码有提示 进到user.php 后发现是空的,看了wp才知道,有bak 下载下来直接爆破 但是那个1990是蛮骚的 直接进去登录 登录成功后是空的,走fd看看是怎么过 的 改包然后 ...

  8. 回顾servlet生命周期(代码测试),读取初始化参数

    servlet生命周期 为简洁,本例使用注解方式来测试,代码部分很简单,只需要新建一个serlet,继承自HttpServlet,重写init,doGet,doPost,destory方法即可,使用注 ...

  9. C# 对文本文件的几种读写方法总结

    计算机在最初只支持ASCII编码,但是后来为了支持其他语言中的字符(比如汉字)以及一些特殊字符(比如€),就引入了Unicode字符集.基于Unicode字符集的编码方式有很多,比如UTF-7.UTF ...

  10. Python脱产8期 Day13 2019/4/28

    一 函数的嵌套定义 1在一个函数的内部定义另一个函数. 2.为什么有函数的嵌套定义: # 1)函数fn2想直接使用fn1函数的局部变量,可以讲fn2直接定义到fn1的内部,这样fn2就可以直接访问fn ...