Python文本处理nltk基础
自然语言处理 -->计算机数据 ,计算机可以处理vector,matrix 向量矩阵。
NLTK 自然语言处理库,自带语料,词性分析,分类,分词等功能。
简单版的wrapper,比如textblob。
import nltk
nltk.download() #可以下载语料库等。
#自带的语料库
from nltk.corpus import brown
brown.categories()
len(brown.sents()) # 多少句话
len(brown.words()) # 多少个单词
一 简单的文本预处理流水线
1.分词 Tokenize 长句子分成有意义的小部件。
sentence = "hello word"
nltk.word_tokenize(sentence)
nltk的分词对于中文是无效的,因为英文是词语按照空格键分开的,而中文单个字分开是无效的,比如今天天气不错,要分成 今天/天气/不错/!
中文有两种 1 启发式 Heuristic ,就是比如最长词,字典作为词库,有今天,没有今天天这么长的,所以今天为一个词。
2 机器学习/统计方法:HMM,CRF。(coreNLP ,斯坦福)
中文分词 结巴。
分完词之后再调用nltk。
社交网络语音的分词,会员表情符号,url,#话题,@某人 需要正则表达式来预处理。
2 nltk.pos_tag(text) #text为分词完的list,part of speech 在这句话中的部分,adj adv,det(the,a这种)
3 stemming 词干提取 如walking 到walk
lemmatize(postag)词形归一 #会根据词性,把is am are 归一成be went 归一成go 这种
4 stop words(停止词), he,the这些没有意义的词,直接删掉。
from nltk.corpus import stopwords
[word for word in word_list if word not in stopwords.words('english')]
插入图片1 流程
插入图片2 life is like a box of chocolate
二 向量化
nltk在nlp的经典应用1情感分析 2 文本相似度 3 文本分类(用的最多,如新闻分类)
1.情感分析:
最简单的 sentiment dictionary
字典中单词的正负性,如 like 1分 good 2分 bad -2 分 terrible -3 分。 一句话所有的词打分,相加看正负。
sentimen_dictionary = {}
for line in open('*.txt'):
word,score = line.split('\t')
sentiment_dictionary[word] = int(score)
total_score = sum(sentiment_dictionary.get(word,0) for word in words) #字典中有则score,没有的Word则0分。
#有的人骂的比较黑装粉,需要配上ML
from nltk.classify import NaiveBayesClassifier
# 随手的简单训练集
s1 = 'this is a good book'
s2 = 'this is a awesome book'
s3 = 'this is a bad book'
s4 = 'this is a terrible book'
def preprocess(s):
#句子处理,这里是用split(),把每个单词都分开,没有用到tokenize,因为例子比较简单。
return {word : True for word in s.lower().split()}
#{fname,fval} 这里用true是最简单的存储形式,fval 每个文本单词对应的值,高级的可以用word2vec来得到fval。
#训练 this is terrible good awesome bad book 这样一次单词长列(1,1,0,1,0,0,1)如s1对应的向量 training_data = [ [preprocess(s1),'pos'],
[preprocess(s1),'pos'],
[preprocess(s1),'neg'],
[preprocess(s1),'neg']]
model = NaiveBayesClassifier.train(training_data)
print(model.classify(preprocess('this is a good book')))
2.文本相似性
把文本变成相同长度的向量,通过余弦相似度求相似性。
nltk中FreqDist统计文字出现的频率
3.文本分类
TF-IDF
TF,Term Frequency,一个term在一个文档中出现的有多频繁。
TF(t) = t出现在文档中的次数/文档中的term总数
IDF :Inverse Document Frequency,衡量一个term有多重要,如 is the 这些不重要
把罕见的权值农高。
IDF(t) = log e (文档总数/含有t的文档总数)
TF-IDF = TF×IDF
from nltk.text import TextCollection
# 首首先, 把所有的文文档放到TextCollection类中。
# 这个类会自自动帮你断句句, 做统计, 做计算
corpus = TextCollection(['this is sentence one',
'this is sentence two',
'this is sentence three'])
# 直接就能算出tfidf
# (term: 一一句句话中的某个term, text: 这句句话)
print(corpus.tf_idf('this', 'this is sentence four'))
# 0.444342
# 同理理, 怎么得到一一个标准大大小小的vector来表示所有的句句子子?
# 对于每个新句句子子
new_sentence = 'this is sentence five'
# 遍历一一遍所有的vocabulary中的词:
for word in standard_vocab:
print(corpus.tf_idf(word, new_sentence))
# 我们会得到一一个巨⻓长(=所有vocab⻓长度)的向量量
Python文本处理nltk基础的更多相关文章
- 使用Python中的NLTK和spaCy删除停用词与文本标准化
概述 了解如何在Python中删除停用词与文本标准化,这些是自然语言处理的基本技术 探索不同的方法来删除停用词,以及讨论文本标准化技术,如词干化(stemming)和词形还原(lemmatizatio ...
- 《NLTK基础教程》译者序
购买<NLTK基础教程> 说来也凑巧,在我签下这本书的翻译合同时,这个世界好像还不知道AlphaGo的存在.而在我完成这本书的翻译之时,Master已经对人类顶级高手连胜60局了.至少从媒 ...
- python 3.x 爬虫基础---常用第三方库(requests,BeautifulSoup4,selenium,lxml )
python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 python 3.x 爬虫基础---常用第三方库 ...
- Python运维开发基础08-文件基础【转】
一,文件的其他打开模式 "+"表示可以同时读写某个文件: r+,可读写文件(可读:可写:可追加) w+,写读(不常用) a+,同a(不常用 "U"表示在读取时, ...
- Python运维开发基础04-语法基础【转】
上节作业回顾(讲解+温习90分钟) #!/usr/bin/env python3 # -*- coding:utf-8 -*- # author:Mr.chen # 仅用列表+循环实现“简单的购物车程 ...
- python 3.x 爬虫基础---Requersts,BeautifulSoup4(bs4)
python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 python 3.x 爬虫基础---Requer ...
- Python服务器开发 -- 网络基础
Python服务器开发 -- 网络基础 网络由下往上分为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层.HTTP是高层协议,而TCP/IP是个协议集,包过许多的子协议.... 网络由下 ...
- python 文本相似度计算
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from g ...
- 算是休息了这么长时间吧!准备学习下python文本处理了,哪位大大有好书推荐的说下!
算是休息了这么长时间吧!准备学习下python文本处理了,哪位大大有好书推荐的说下!
随机推荐
- Swing布局管理器介绍
创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://zhangjunhd.blog.51cto.com/113473/128174 当选 ...
- 锐捷linux客户端常用命令(主要用来连接校园网或公司局域网)
锐捷访问校园网,.sh脚本文件rjsu*.sh-u 用户名-P 密码-S 参数1保存密码参数0不保存密码 其实: 直接使用md5认证方式输入用户名密码并且配置好ip之后,重新打开网卡即可有一定 ...
- Mac 热键大全
屏幕捕捉快捷键动作............................保存到............-快捷键 全屏捕捉........................桌面(.PDF文件)..... ...
- Dynamics CRM 2011-RootComponent Type
笔者因为时不时要导出solution,对solution xml进行处理,所以把xml中的rootcomponent type列一下 Type Description 1 Entity 2 Attr ...
- WCF+Restfull服务 提交或获取数据时数据大小限制问题解决方案
近日在使用wcf的restfull架构服务时遭遇到了提交大数据的问题. 大数据包含两种情形: 1)单条数据量过大. 2)提交或获取的数据条数过多. 在测试时发现,默认设置下当单条JSON数据大于30K ...
- MyBatis中jdbcType和javaType的映射关系
JDBC Type Java Type CHAR String VARCHAR String LONGVARCHAR String NUMERIC java.math.BigDecimal DECIM ...
- 网页万能排版布局插件,web视图定位布局创意技术演示页
html万能排版布局插件,是不是感觉很强大,原理其实很简单,不过功能很强大哈哈,大量节省排版布局时间啊! test.html <!doctype html> <html> &l ...
- 【译】Spring 4 + Hibernate 4 + Mysql + Maven集成例子(注解 + XML)
前言 译文链接:http://websystique.com/spring/spring4-hibernate4-mysql-maven-integration-example-using-annot ...
- 使用c/c++扩展python
用python脚本写应用比较方便,但有时候由于种种原因需要扩展python(比如给程序提供python接口等). 之前一直想整理下,今天终于坐下来把这件事情给做了,这里记录下,也方便我以后查阅. 说明 ...
- 用application实现一个网页的浏览计数器
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...