hdu4779 组合计数+dp
题意:给了n*m的网格,然后有p个重型的防御塔,能承受1次攻击,q个轻型防御塔不能接受任何攻击,然后每个防御搭会攻击他所在的行和所在的列,最后求在这个网格上放至少一个防御塔的方案数,
我们枚举 选取多少个重型防御塔然后这个重型防御塔有多少是两个在一行,和两个在一列 O(P^3)的效率
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <string.h>
#include <vector>
using namespace std;
typedef long long LL;
const LL MOD=;
const int maxn=;
LL C[maxn][maxn];//组合数
LL light[maxn][maxn][maxn];// light[i][j][k]k栈轻量级的防御塔放在i行j列的矩阵的方案数
LL heavy[maxn];// haeavy[i] 表示有i个两个同一行的重量级的方案数
LL Nt[maxn];//N! n阶乘
void init()
{
Nt[]=;
for(LL i=; i<=; i++)
Nt[i]=(Nt[i-]*i)%MOD;
memset(C,,sizeof(C));
C[][]=;
for(int i=; i<=; i++)
{
C[i][]=;
for(int j=; j<=i; j++)
C[i][j]=(C[i-][j]+C[i-][j-])%MOD;
}
for(int i=; i<=; i++)
for(int j=; j<=; j++)
{
int kM=min(i,j);
light[ i ][ j ][ ] = ;
for(int k=; k<=kM; k++)
{
light[ i ][ j ][ k ]=( ( (C[ i ][ k ]*C[ j ][ k ])%MOD )*Nt[k])%MOD;
}
}
for(int i=; i<=; i++)
for(int j=; j<=; j++)
{
int kM=min(i,j);
for(int k=; k<=kM; k++)
light[i][j][k]=(light[i][j][k-]+light[i][j][k])%MOD;
}
heavy[]=;
for(int i=; i<=; i++)
{
LL ans=;
for(int j=i*; j>; j-= )
{
ans=(C[j][]*ans)%MOD;
}
heavy[i]=ans;
}
} int main()
{
init();
int N,M,P,Q;
int cas;
scanf("%d",&cas);
for(int cc=; cc<=cas; cc++)
{
scanf("%d%d%d%d",&N,&M,&P,&Q);
LL ans=;
for(int k=; k<=P; k++)
for(int i=; i<=k; i+=)
for(int j=; j+i<=k; j+=)
{
int LN=N-i/-j;
int LM=M-j/-i;
if(min(LN,LM)<k-(i+j) )continue;
LN=N,LM=M;
LL d=;
d=( ( ( C[LN][i/]*C[LM][i] )%MOD )*heavy[i/])%MOD;
LN-=i/; LM-=i;
d=( d*( ( ( ( C[LN][j] * C[LM][j/] )%MOD ) * heavy[j/] )%MOD ) )%MOD;
LN-=j;
LM-=j/;
int lest=k-(i+j);
d= ( ( ( d*( ( C[LN][lest]*C[LM][lest] )%MOD ))%MOD)*Nt[lest] )%MOD;
LN-=lest;LM-=lest;
if(LN>&&LM>)
{
int ge=min(min(LN,LM),Q);
d=(d*(light[LN][LM][ge]))%MOD;
}
ans=(ans+d)%MOD;
}
if(Q>)
{
int ge=min(min(N,M),Q);
ans=(ans+light[N][M][ge])%MOD;
ans=(ans-+MOD)%MOD;
}
printf("%I64d\n",ans%MOD);
}
return ;
}
hdu4779 组合计数+dp的更多相关文章
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...
- luoguP4492 [HAOI2018]苹果树 组合计数 + dp
首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\( ...
- Singer House CodeForces - 830D (组合计数,dp)
大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案 ...
- [SDOI2010]地精部落[计数dp]
题意 求有多少长度为 \(n\) 的排列满足 \(a_1< a_2> a_3 < a_4 \cdots\) 或者 $a_1> a_2 < a_3 > a_4\cdo ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
- 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
随机推荐
- zepto.js移动端城市选择插件
http://sc.chinaz.com/jiaoben/170327301850.htm
- Phone List 字典树 OR STL
Phone List Time Limit: 1 Sec Memory Limit: 128 Mb Submitted: 140 Solved: 35 Description ...
- (98)Wangdao.com_第三十天_拖拉事件
拖拉事件 拖拉 drag ,是指用户在某个对象上按下鼠标键不放,拖动它到另一个位置,然后释放鼠标键,将该对象放在那里. 一旦某个元素节点的 draggable 属性设为true,就无法再用鼠标选中该节 ...
- linux学习:特殊符号,数学运算,图像与数组与部分终端命令用法整理
指令:let.expr.array.convert.tput.date.read.md5.ln.apt.系统信息 一:特殊符号用法整理 系统变量 $# 是传给脚本的参数个数 $0 是脚本本身的名字 $ ...
- Oracle 索引 index
索引是一个模式对象,其中包含每个值的条目,该条目出现在表或集群的索引列中,并提供对行的直接快速访问. 创建一个索引: create index 索引名 on 表名 (字段名); 删除索引: dro ...
- 2019.3.23 python的unittest框架与requests
(明天学测试用例集合及输出测试报告!!!) import unittest import requests import json class Test_get(unittest.TestCase): ...
- C++中继承与抽象类
继承语法格式如下: class 子类名称 : 继承方式(public private protected 三种) 父类名称 纯虚函数格式: virtual 返回值类型 函数名(参数列表)= 0:含有纯 ...
- JS之数组的几个不 low 操作
JS之数组的几个不 low 操作 1.扁平化n维数组 1)终极篇 [1,[2,3]].flat(2) //[1,2,3] [1,[2,3,[4,5]].flat(3) //[1,2,3,4,5] [1 ...
- 旧版本的firefox 下载 和 安装(查找web元素路径) ---web 元素 自动化测试
ftp.mozilla.orgpubfirefoxreleases 旧版下载地址 选择47版本 因为48后面的会进行插件校验 这样firepath安装不成功 安装文件:在百度 ...
- [dev] Go的协程切换问题
子标题:runtime.Gosched() 是干嘛用的? 1. go程序都有一个环境变量,做线程数设置 GOMAXPROCS 2. 当协程数小于等于线程数的时候,程序行为上与多线程没有区别. 3. 当 ...