【原创】大叔算法分享(5)聚类算法DBSCAN
一 简介
DBSCAN:Density-based spatial clustering of applications with noise
is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.

二 原理
DBSCAN是一种基于密度的聚类算法,算法过程比较简单,即将相距较近的点(中心点和它的邻居点)聚成一个cluster,然后不断找邻居点的邻居点并加到这个cluster中,直到cluster无法再扩大,然后再处理其他未访问的点;
三 算法伪代码

子方法伪代码

DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form a dense region (minPts).
DBSCAN算法主要有两个参数,一个是距离Eps,一个是最小邻居的数量MinPts,即在中心点半径Eps之内的邻居点数量超过MinPts时,中心点和邻居点才可以组成一个cluster;
四 应用代码实现
python
示例代码
def main_fun():
loc_data = [(40.8379295833, -73.70228875), (40.750613794,-73.993434906), (40.6927066969, -73.8085984165), (40.7489736586, -73.9859616017), (40.8379525833, -73.70209875), (40.6997066969, -73.8085234165), (40.7484436586, -73.9857316017)]
epsilon = 10
db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversine').fit(np.radians(loc_data))
labels = db.labels_
print(labels)
print(db.core_sample_indices_)
print(db.components_)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
for i in range(0, n_clusters_):
print(i)
indexs = np.where(labels == i)
for j in indexs:
print(loc_data[j]) if __name__ == '__main__':
main_fun()
主要结果说明
|
详见官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
scala
依赖
<dependency>
<groupId>org.scalanlp</groupId>
<artifactId>nak_2.11</artifactId>
<version>1.3</version>
</dependency><dependency>
<groupId>org.scalanlp</groupId>
<artifactId>breeze_2.11</artifactId>
<version>0.13</version>
</dependency>
示例代码
import breeze.linalg.DenseMatrix
import nak.cluster.{DBSCAN, GDBSCAN, Kmeans} val matrix = DenseMatrix(
(40.8379295833, -73.70228875),
(40.6927066969, -73.8085984165),
(40.7489736586, -73.9859616017),
(40.8379525833, -73.70209875),
(40.6997066969, -73.8085234165),
(40.7484436586, -73.9857316017),
(40.750613794,-73.993434906)) val gdbscan = new GDBSCAN(
DBSCAN.getNeighbours(epsilon = 1000.0, distance = Kmeans.euclideanDistance),
DBSCAN.isCorePoint(minPoints = 1)
)
val clusters = gdbscan cluster matrix
clusters.foreach(cluster => {
println(cluster.id + ", " + cluster.points.length)
cluster.points.foreach(p => p.value.data.foreach(println))
})
详见官方文档:https://github.com/scalanlp/nak
算法细节详见参考
参考:A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
其他:
http://www.cs.fsu.edu/~ackerman/CIS5930/notes/DBSCAN.pdf
https://www.oreilly.com/ideas/clustering-geolocated-data-using-spark-and-dbscan
【原创】大叔算法分享(5)聚类算法DBSCAN的更多相关文章
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
- 数据挖掘十大算法--K-均值聚类算法
一.相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...
- 【算法】K-Means聚类算法(k-平均或k-均值)
1.聚类算法和分类算法的区别 a)分类 分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类. 举例: 假如你有一堆 ...
- 关于k-means聚类算法的matlab实现
在数据挖掘中聚类和分类的原理被广泛的应用. 聚类即无监督的学习. 分类即有监督的学习. 通俗一点的讲就是:聚类之前是未知样本的分类.而是根据样本本身的相似性进行划分为相似的类簇.而分类 是已知样本分类 ...
- 一步步教你轻松学K-means聚类算法
一步步教你轻松学K-means聚类算法(白宁超 2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...
- python聚类算法实战详细笔记 (python3.6+(win10、Linux))
python聚类算法实战详细笔记 (python3.6+(win10.Linux)) 一.基本概念: 1.计算TF-DIF TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库 ...
- 模糊聚类算法(FCM)
伴随着模糊集理论的形成.发展和深化,RusPini率先提出模糊划分的概念.以此为起点和基础,模糊聚类理论和方法迅速蓬勃发展起来.针对不同的应用,人们提出了很多模糊聚类算法,比较典型的有基于相似性关系和 ...
- ML.NET技术研究系列-2聚类算法KMeans
上一篇博文我们介绍了ML.NET 的入门: ML.NET技术研究系列1-入门篇 本文我们继续,研究分享一下聚类算法k-means. 一.k-means算法简介 k-means算法是一种聚类算法,所谓聚 ...
- SIGAI机器学习第二十四集 聚类算法1
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法 ...
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
随机推荐
- Jquery mobile动态生成ListView调用刷新方法报错
错误:cannot call methods on listview prior to initialization... 示例: <div data-role="page" ...
- OpenStack-Keystone(2)
一. Keystone 概述 管理用户及其权限 维护OpenStack Services的Endpoint Authentication(认证)和 Authorization(授权) 1.验证用户 验 ...
- 手动用tomcat启动war包,无法访问web项目
先说一下自己采的小坑,网上大多解答都是复制来复制去,不说重点在哪.我这里简单总结下访问路径问题 一.用idea打成war包,具体步骤如下图: 步骤:在项目配置选Artifacts新建Web Appli ...
- 在IIS上搭建WebSocket服务器(一)
一.搭建环境 1.System.Web.WebSockets需搭建在Windows8及Server2012以上系统的上. 2.在Windows8及Server2012以上系统的上安装IIS和WebSo ...
- SpringCloud学习笔记:服务注册与发现Eureka(2)
1. Eureka简介 Eureka是一个用于服务注册和发现的组件,分为Eureka Server和Eureka Client,Eureka Server为Eureka服务注册中心,Eureka Cl ...
- codeforces444A
DZY Loves Physics CodeForces - 444A DZY loves Physics, and he enjoys calculating density. Almost eve ...
- 【XSY3139】预言家 数位DP NFA
题目描述 有一个定义在 \(\{0,1,2,3,4,5,6,7,8,9\}\) 上的合规表达式,包含三种基本的操作: 结合:\(E_1E_2\) 分配:\((E_1|E_2|\ldots|E_n),n ...
- LOJ #2135. 「ZJOI2015」幻想乡战略游戏(点分树)
题意 给你一颗 \(n\) 个点的树,每个点的度数不超过 \(20\) ,有 \(q\) 次修改点权的操作. 需要动态维护带权重心,也就是找到一个点 \(v\) 使得 \(\displaystyle ...
- LoadRunner【第四篇】参数化
参数化的定义及使用场景 定义:将脚本中的特定值用变量替代,该变量值是变化的(注意:这个值是我们自己创建的,不是服务器返回的). 使用参数化: 1.业务考虑,不允许相同信息 2.真实模拟不同用户 3.真 ...
- 寒冬之下,移动开发没人要了? 浅谈 iOS 开发者该 何去何从?
前言: 作者 | 梅梅 文章来源 CSDN 对于移动互联网而言,2018 年像是球场上的一声裁判哨.哨声响起,高潮迭起的上半场结束.本该再创辉煌的下半场,还没开赛却被告之:规则改变.场地收缩.教 ...