spark1.3.x与spark2.x启动executor不同的cpu core分配方式
***这里的executor在worker上分配策略以spreadOut 为例***
1.3版本关键点:
for (app <- waitingApps if app.coresLeft > 0) { //对还未被完全分配资源的apps处理
val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
.filter(canUse(app, _)).sortBy(_.coresFree).reverse //根据core Free对可用Worker进行降序排序。
val numUsable = usableWorkers.length //可用worker的个数 eg:可用5个worker
val assigned = new Array[Int](numUsable) //候选Worker,每个Worker一个下标,是一个数组,初始化默认都是0
var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)//还要分配的cores = 集群中可用Worker的可用cores总和(10), 当前未分配core(5)中找最小的
var pos = 0
while (toAssign > 0) {
if (usableWorkers(pos).coresFree - assigned(pos) > 0) { //以round robin方式在所有可用Worker里判断当前worker空闲cpu是否大于当前数组已经分配core值
toAssign -= 1
assigned(pos) += 1 //当前下标pos的Worker分配1个core +1
}
pos = (pos + 1) % numUsable //round-robin轮询寻找有资源的Worker
}
// Now that we've decided how many cores to give on each node, let's actually give them
for (pos <- 0 until numUsable) {
if (assigned(pos) > 0) { //如果assigned数组中的值>0,将启动一个executor在,指定下标的机器上。
val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) //更新app里的Executor信息
launchExecutor(usableWorkers(pos), exec) //通知可用Worker去启动Executor
app.state = ApplicationState.RUNNING
}
}
}
以上红色代码清晰的展示了在平均分配的场景下,每次会给worker分配1个core,所以说在spark-submit中如果设置了 --executor-cores属性未必起作用;
但在2.x版本的spark中却做了这方面的矫正,它确实会去读取--executor-cores属性中的值,如果该值未设置则依然按照1.3.x的方式执行,代码如下:
private def scheduleExecutorsOnWorkers(
app: ApplicationInfo,
usableWorkers: Array[WorkerInfo],
spreadOutApps: Boolean): Array[Int] = {
val coresPerExecutor = app.desc.coresPerExecutor
val minCoresPerExecutor = coresPerExecutor.getOrElse(1)
val oneExecutorPerWorker = coresPerExecutor.isEmpty
val memoryPerExecutor = app.desc.memoryPerExecutorMB
val numUsable = usableWorkers.length
val assignedCores = new Array[Int](numUsable) // Number of cores to give to each worker
val assignedExecutors = new Array[Int](numUsable) // Number of new executors on each worker
var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum) /** Return whether the specified worker can launch an executor for this app. */
def canLaunchExecutor(pos: Int): Boolean = {
val keepScheduling = coresToAssign >= minCoresPerExecutor
val enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor // If we allow multiple executors per worker, then we can always launch new executors.
// Otherwise, if there is already an executor on this worker, just give it more cores.
val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutors(pos) == 0
if (launchingNewExecutor) {
val assignedMemory = assignedExecutors(pos) * memoryPerExecutor
val enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutor
val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimit
keepScheduling && enoughCores && enoughMemory && underLimit
} else {
// We're adding cores to an existing executor, so no need
// to check memory and executor limits
keepScheduling && enoughCores
}
} // Keep launching executors until no more workers can accommodate any
// more executors, or if we have reached this application's limits
var freeWorkers = (0 until numUsable).filter(canLaunchExecutor)
while (freeWorkers.nonEmpty) {
freeWorkers.foreach { pos =>
var keepScheduling = true
while (keepScheduling && canLaunchExecutor(pos)) {
coresToAssign -= minCoresPerExecutor
assignedCores(pos) += minCoresPerExecutor // If we are launching one executor per worker, then every iteration assigns 1 core
// to the executor. Otherwise, every iteration assigns cores to a new executor.
if (oneExecutorPerWorker) {
assignedExecutors(pos) = 1
} else {
assignedExecutors(pos) += 1
} // Spreading out an application means spreading out its executors across as
// many workers as possible. If we are not spreading out, then we should keep
// scheduling executors on this worker until we use all of its resources.
// Otherwise, just move on to the next worker.
if (spreadOutApps) {
keepScheduling = false
}
}
}
freeWorkers = freeWorkers.filter(canLaunchExecutor)
}
assignedCores
}
spark1.3.x与spark2.x启动executor不同的cpu core分配方式的更多相关文章
- worker启动executor源码分析-executor.clj
在"supervisor启动worker源码分析-worker.clj"一文中,我们详细讲解了worker是如何初始化的.主要通过调用mk-worker函数实现的.在启动worke ...
- [Spark内核] 第32课:Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等
本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者 ...
- Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等
本课主题 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 Spark Worke ...
- Android Activity启动黑/白屏原因与解决方式
Android Activity启动黑/白屏原因与解决方式 我们新建一个HelloWorld项目,运行在手机上时,Activity打开之前会有一个动画,而这个动画里是全白或者全黑的(取决于你的主题是亮 ...
- docker 启动报错:Docker.Core.Backend.BackendException: Error response from daemon: open \\.\pipe\docker_e
win10 docker启动后报错: Docker.Core.Backend.BackendException:Error response from daemon: open \\.\pipe\do ...
- 04_线程的创建和启动_使用Callable和Future的方式
[简述] 从java5开始,java提供了Callable接口,这个接口可以是Runnable接口的增强版, Callable接口提供了一个call()方法作为线程执行体,call()方法比run() ...
- web容器启动后自动执行程序的几种方式比较
1. 背景 1.1. 背景介绍 在web项目中我们有时会遇到这种需求,在web项目启动后需要开启线程去完成一些重要的工作,例如:往数据库中初始化一些数据,开启线程,初始化消息队 ...
- pythoncharm 中解决启动server时出现 “django.core.exceptions.ImproperlyConfigured: Requested setting DEBUG, but settings are not configured”的错误
背景介绍 最近,尝试着用pythoncharm 这个All-star IDE来搞一搞Django,于是乎,下载专业版,PJ等等一系列操作之后,终于得偿所愿.可以开工了. 错误 在园子里找了一篇初学者的 ...
- Oracle数据库启动出现ORA-27101错误之ORA-19815处理方式及数据备份
ORA-27101: sharedmemory realm does not exist之ORA-19815处理 重启数据库(数据库:muphy),登陆是越到错误: ORA-27101: shared ...
随机推荐
- ES6 + Webpack + React + Babel 如何在低版本浏览器上愉快的玩耍
https://blog.csdn.net/a324539017/article/details/52824189
- [Ynoi2018]末日时在做什么?有没有空?可以来拯救吗?
这道题真的超级...毒瘤 + 卡常 + 耗 RP 啊... 传送门 noteskey 题解看 shadowice 大仙 的 code 如果发现自己 T 掉了,别心急,洗把脸再交一遍试试... //by ...
- 【easy】118.119.杨辉三角
这题必会啊!!! 第一题118. class Solution { public: vector<vector<int>> generate(int numRows) { ve ...
- 关于Activity生命周期的总结
1.Acitivity的四种状态 (1)运行:位于Activity栈顶,用户可见,可获得焦点. (2)暂停:如果一个活动被另一个非全屏的活动所覆盖(比如一个Dialog),那么该活动就失去了焦点,它将 ...
- C++入门篇三
引用:& &放在左边就是引用,放在右边就是取地址 int main() { //引用的类型必须相同,一经引用,不可以在被引用 ; int &b = a;//b引用a之后,两个同 ...
- Java学习之Java接口回调理解
Java接口回调 在Java学习中有个比较重要的知识点,就是今天我们要讲的接口回调.接口回调的理解如果解释起来会比较抽象,我一般喜欢用一个或几个经典的例子来帮助加深理解. 举例:老板分派给员工做事,员 ...
- java.lang.ClassNotFoundException: org.springframework.http.converter.json.MappingJacksonHttpMessageConverter
原因是Spring 3.x 和4.X处理JSON的一个类不一样,而这个东西又配置在xml文件中,所以编译时又无法发现 spring3.x是org.springframework.http.conver ...
- Python的单例模式
一.何为单例模式 单例模式:保证一个类仅有一个实例,并提供一个访问他的全局访问点. 实现某个类只有一个实例的途径: 1.让一个全局变量使得一个对象被访问,但是他不能防止外部实例化多个对象. 2.让类自 ...
- Eclipse连接HBase 报错:org.apache.hadoop.hbase.PleaseHoldException: Master is initializing
在eclipse中连接到HBase报错org.apache.hadoop.hbase.PleaseHoldException: Master is initializing,搜索了好久,网上其它人说的 ...
- HTML5全屏浏览器兼容方案
最近一个项目有页面全屏的的需求,搜索了下有HTML5的全屏API可用,不过各浏览器的支持不一样. 标准 webkit Firefox IE Element.requestFullscreen() ...