BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分
上上周见fc爷用长链剖分秒题 于是偷偷学一学
3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度\(O(n^2)\)
考虑令
\(f[x][j]\)表示以\(x\)为根的子树内距离\(x\)为\(j\)的点的个数
\(g[x][j]\)表示以\(x\)为根的子树内的点对\((a,b)\)距他们的\(lca\)的距离为\(d\),\(x\)距\(lca\)的距离为\(d-j\)的点对数
那么转移很明了
对于 \(x,y\) 其中\(fa[y]=x\) 有
\(f[x][i]+=f[y][i-1]\)
\(g[x][i-1]+=g[y][i]\)
\(g[x][i+1]+=f[x][i+1]*f[y][i]\)
\(ans+=f[x][i-1]*g[y][i]+g[x][i+1]*f[y][i]\)
发现对于第一个儿子\(y\)有
\(f[x]=f[y]-1\)
\(g[x]=g[y]+1\)
\(ans+=g[x][0]\)
于是我们可以对于最长链先用指针转移 复杂度为\(O(1)\) 其余暴力转移 这样的复杂度看似\(O(nlog_n)\) 其实是\(O(n)\)
我在网上的题解里看到一个写的比较通俗易懂的:
实际上如果一个点v 在某个祖先u 对复杂度有+1的效果,说明v 不在u往下的最长链上,并且v 在 u 的儿子u’(也是 v 的祖先)的最长链上。则到u 的父亲时,v 不在 u的最长链上,则对答案没有贡献。所以贡献的总和是 O(n)的。
贴上代码
#include<bits/stdc++.h>
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define ll long long
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
using namespace std;
const int N=1e5+5;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct Edge{
int v,nxt;
}e[N<<1];
int n,tot;
int dep[N],dn[N],son[N],head[N];
ll tmp[N*10],*tt=tmp,*f[N],*g[N];
ll ans;
void add(int u,int v){
e[++tot].v=v,e[tot].nxt=head[u],head[u]=tot;
e[++tot].v=u,e[tot].nxt=head[v],head[v]=tot;
}
inline void dfs(int x,int fa){
dn[x]=x,dep[x]=dep[fa]+1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].v;
if(j==fa) continue;
dfs(j,x);
if(dep[dn[x]]<dep[dn[j]]) dn[x]=dn[j],son[x]=j;
}
for(int i=head[x];i;i=e[i].nxt) if(e[i].v!=fa&&(x==1||e[i].v!=son[x])){
int j=dn[e[i].v];
f[j]=(tt+=dep[j]-dep[x]+1);
g[j]=(++tt),tt+=((dep[j]-dep[x])<<1)+1;
}
}
inline void dp(int x,int fa){
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].v;
if(j==fa) continue;
dp(j,x);
if(j==son[x]) f[x]=f[j]-1,g[x]=g[j]+1;
}
ans+=g[x][0],f[x][0]=1;
for(int i=head[x];i;i=e[i].nxt){
int j=e[i].v;
if(j==fa||j==son[x]) continue;
for(int k=0;k<=dep[dn[j]]-dep[x];k++) ans+=f[x][k-1]*g[j][k]+g[x][k+1]*f[j][k];
for(int k=0;k<=dep[dn[j]]-dep[x];k++) {
g[x][k-1]+=g[j][k];
g[x][k+1]+=f[x][k+1]*f[j][k];
f[x][k+1]+=f[j][k];
}
}
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
n=read();
for(int i=1;i<n;i++) add(read(),read());
dfs(1,0),dp(1,0);
printf("%lld\n",ans);
return 0;
}
BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分的更多相关文章
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
- 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP
[BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- 4543: [POI2014]Hotel加强版
4543: [POI2014]Hotel加强版 链接 分析: f[u][i]表示子树u内,距离u为i的点的个数,g[u][i]表示在子树u内,已经选了两个深度一样的点,还需要在距离u为i的一个点作为第 ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- bzoj 4543: [POI2014]Hotel加强版
Description 给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量 Solution 考虑暴力 \(DP\) 设 \(f[i][ ...
- bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分
题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...
- BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)
题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...
随机推荐
- Integer to Roman & Roman to Integer
Integer to Roman Given an integer, convert it to a roman numeral. The number is guaranteed to be wit ...
- sleep命令
sleep支持睡眠(分,小时) sleep 1 睡眠1秒 sleep 1s 睡眠1秒 sleep 1m 睡眠1分 sleep 1h 睡眠1小时
- js权威指南---学习笔记01
1.当函数赋值给对象的属性时,就变为了方法:2.被零整除不报错,只会返回无穷大(Infinity)或者负无穷大.例外:零除以零等于非数字(NaN).3.NaN与任何值都不相等! 4.Javascrip ...
- csslint在前端项目中的使用
大家都听说过jslint,eslint,不过你可能没见过csslint,你可能会问csslint有什么用,为什么今天要说csslint,是因为我在开发中遇到一个坑,其实之前不怎么使用csslint的, ...
- php rabbitmq的扩展
1.下载:https://github.com/alanxz/rabbitmq-c/archive/v0.9.0.tar.gz mkdir build && cd build # 这一 ...
- Java流(Stream)、Scanner类
读取控制台输入 Java 的控制台输入由 System.in 完成. 为了获得一个绑定到控制台的字符流,你可以把 System.in 包装在一个 BufferedReader 对象中来创建一个字符流. ...
- 一步一步学习IdentityServer3 (10)
在某些服务器环境下 identityserver3 会闹情绪, 比如在google浏览器下授权失败(陷入死循环) 查了很多资料好像然并卵 Microsoft.Owin.Security.Notific ...
- 【LOJ】#2047. 「CQOI2016」伪光滑数
题解 可持久化可并堆 用\(f[i,j]\)表示最大的质数标号为i,然后有j个质数乘起来 用\(g[i,j]\)表示\(\sum_{k = 1}^{i}f[k,j]\) 转移是 \(f[i,j] = ...
- 基于 Laravel 开发博客应用系列 —— Homestead 和 Laravel 安装器
1.Homestead 从主机操作系统的控制台中(Windows 中被称作命令提示符,Linux 中被称作终端),你可以轻松通过不带参数的homestead 命令查看所有有效的 Homestead 命 ...
- 在Ubuntu18.04中QT编程的环境构建(转)
在Ubuntu18.04中QT编程的环境构建 原点分析 百家号06-2110:14 如果说QT大家觉得陌生的话,那么 Windows 早年推出的C++图形用户界面的应用程序开发框架MFC,应该是耳熟能 ...