题目链接

Problem Description

Happy New Term!

As having become a junior, xiaoA recognizes that there is not much time for her to AC problems, because there are some other things for her to do, which makes her nearly mad.

What's more, her boss tells her that for some sets of duties, she must choose at least one job to do, but for some sets of things, she can only choose at most one to do, which is meaningless to the boss. And for others, she can do of her will. We just define the things that she can choose as "jobs". A job takes time , and gives xiaoA some points of happiness (which means that she is always willing to do the jobs).So can you choose the best sets of them to give her the maximum points of happiness and also to be a good junior(which means that she should follow the boss's advice)?

Input

There are several test cases, each test case begins with two integers n and T (0<=n,T<=100) , n sets of jobs for you to choose and T minutes for her to do them. Follows are n sets of description, each of which starts with two integers m and s (0<m<=100), there are m jobs in this set , and the set type is s, (0 stands for the sets that should choose at least 1 job to do, 1 for the sets that should choose at most 1 , and 2 for the one you can choose freely).then m pairs of integers ci,gi follows (0<=ci,gi<=100), means the ith job cost ci minutes to finish and gi points of happiness can be gained by finishing it. One job can be done only once.

Output

One line for each test case contains the maximum points of happiness we can choose from all jobs .if she can’t finish what her boss want, just output -1 .

Sample Input

3 3

2 1

2 5

3 8

2 0

1 0

2 1

3 2

4 3

2 1

1 1

3 4

2 1

2 5

3 8

2 0

1 1

2 8

3 2

4 4

2 1

1 1

1 1

1 0

2 1

5 3

2 0

1 0

2 1

2 0

2 2

1 1

2 0

3 2

2 1

2 1

1 5

2 8

3 2

3 8

4 9

5 10

Sample Output

5

13

-1

-1

分析:

题目大意:有 n 组任务,T 个体力,每组任务有 m 个,分类为 type,每个任务花费 cose[] 体力,得到 value[] 的开心值,求最大开心值,若不能完成输出-1

     分类为 0:这一组中的 m 个任务至少选择一个。

     分类为 1:这一组中的 m 个任务最多选择一个。

     分类为 2:这一组中的 m 个任务随便选择。

定义:dp[i][k]:完成第 i 组任务时,体力为 k 时获得的开心值。

1.对于分类 0,若当前判断到一个任务 case,则有两种情况:

(1)它是该组第一个被选择的任务,则它更新的状态只能是将上一层的状态转移更新到当前位置。

dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);

(2)它不是第一个被选择的任务,则它可以由当前组的状态转移更新到当前位置。

dp[i][k]=max(dp[i][k],dp[i][k-cost[j]]+value[j]);

为了方便判断处理第一个任务,初始化当前层为 -inf

2.对于分类 1,因为只能选一个或者不选,则它只能由上一层状态转移更新。

dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);

3.对于分类 2,就是普通的 01背包问题

肯定是要从上层的转移过来:dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);

但是还需要考虑到一点就是说,这个组里面的任务可以选取任意多的个数:

dp[i][k]=max(dp[i][k],dp[i][k-cost[j]]+value[j]);

代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
const long long N=200;
using namespace std;
const int inf=0x3f3f3f3f;
int dp[N][N];
int n,T;
int cost[N],value[N];
int main()
{
while(~scanf("%d%d",&n,&T))
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
{
int m,type;
scanf("%d%d",&m,&type);
for(int j=1; j<=m; j++)
scanf("%d%d",&cost[j],&value[j]);
if(type==0)//最少选择一个工作
{
for(int j=0; j<=T; j++)
dp[i][j]=-inf;//方便处理第一个任务,初始化为-inf
for(int j=1; j<=m; j++)
for(int k=T; k>=cost[j]; k--)
{
dp[i][k]=max(dp[i][k],dp[i][k-cost[j]]+value[j]);//不是改组中第一个任务,从改组中的其他任务更新来
dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);//如果是改组中第一个被选择的任务,在从上一组更新来
}
}
else if(type==1)//选择一个或不选
{
for(int j=0; j<=T; j++)
dp[i][j]=dp[i-1][j];//只能由上一层的状态转移来
for(int j=1; j<=m; j++)
for(int k=T; k>=cost[j]; k--)
{
dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);
}
}
else//可以任意的选择
{
for(int j=0; j<=T; j++)
dp[i][j]=dp[i-1][j];//从上一层转移过来
for(int j=1; j<=m; j++)
for(int k=T; k>=cost[j]; k--)
{
dp[i][k]=max(dp[i][k],dp[i][k-cost[j]]+value[j]);//由因为每组内的任务可以多选
dp[i][k]=max(dp[i][k],dp[i-1][k-cost[j]]+value[j]);//直接转移上一层的
}
}
}
dp[n][T]=max(dp[n][T],-1);
printf("%d\n",dp[n][T]);
}
return 0;
}

HDU 3535 AreYouBusy (混合背包之分组背包)的更多相关文章

  1. HDU 3535 AreYouBusy(混合背包)

    HDU3535 AreYouBusy(混合背包) http://acm.hdu.edu.cn/showproblem.php?pid=3535 题意: 给你n个工作集合,给你T的时间去做它们.给你m和 ...

  2. hdu 3535 AreYouBusy 分组背包

    AreYouBusy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  3. [HDU 3535] AreYouBusy (动态规划 混合背包 值得做很多遍)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3535 题意:有n个任务集合,需要在T个时间单位内完成.每个任务集合有属性,属性为0的代表至少要完成1个 ...

  4. HDU 1712 ACboy needs your help (分组背包模版题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1712 有n门课,和m天时间.每门课上不同的天数有不同的价值,但是上过这门课后不能再上了,求m天里的最大 ...

  5. 【HDU】I love sneakers!(分组背包)

    看了许多的题解,都有题目翻译,很不错,以后我也这样写.直接翻译样例: /*鞋子的数量N[1, 100]; 拥有的金钱M[1, 1w]; 品牌数目[1, 10]*/ /*以下四行是对于每双鞋的描述*/ ...

  6. 【HDU - 4341】Gold miner(分组背包)

    BUPT2017 wintertraining(15) #8B 题意 给出每个黄金的坐标.价值及耗时,同一方向的黄金只能依次取,求T时间内收获的最大值. 题解 同一方向,物品前缀和构成的组合,相当于是 ...

  7. 洛谷 P1757 通天之分组背包 【分组背包】

    题目链接:https://www.luogu.org/problemnew/show/P1757#sub 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包 ...

  8. HDU 3535 AreYouBusy (混合背包)

    题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...

  9. HDU 3535 AreYouBusy 经典混合背包

    AreYouBusy Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Su ...

随机推荐

  1. [转帖] .net 2.1 是 LTS长期支持版本.

    [翻译] .NET Core 2.1 发布   原文: Announcing .NET Core 2.1 我们很高兴可以发布 .NET Core 2.1.这次更新包括对性能的改进,对运行时和工具的改进 ...

  2. Java继承,重写方法时改变方法的访问权限

    java中的方法天生具有继承多态特性,这点与C++有很大不同(需要在父类方发上加virtual关键字),但用起来确实方便了许多. 最简单的继承多态 声明一个接口BaseIF,只包含一个方法声明 pub ...

  3. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  4. Vue设置页面的title

    原文地址:http://www.cnblogs.com/JimmyBright/p/7410771.html 前端框架如Vue.React等都是单页面的应用,也就是说整个web站点其实都是一个inde ...

  5. 洛谷 P5105 不强制在线的动态快速排序

    P5105 不强制在线的动态快速排序 题目背景 曦月最近学会了快速排序,但是她很快地想到了,如果要动态地排序,那要怎么办呢? 题目描述 为了研究这个问题,曦月提出了一个十分简单的问题 曦月希望维护一个 ...

  6. 【bzoj3598】 Scoi2014—方伯伯的商场之旅

    http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...

  7. Java考试题之五

    QUESTION 102 Given: 23. Object [] myObjects = { 24. new Integer(12), 25. new String("foo") ...

  8. Java EE之JSP

    1.使用JSP的原因 编写Servlet代码的时候,向响应中输出HTML文档是非常不方便的. PrintWriter writer = response.getWriter(); writer.app ...

  9. 解题:CF1009 Dominant Indices

    题面 长链剖分模板题 只能按深度统计,同时比DSU on tree难理解一些,但是复杂度少个log 对每个点抓出向下延伸最长的儿子叫做长儿子.在合并时用指针继承信息,对于长儿子O(1)继承,其他儿子暴 ...

  10. 2:spring中的@resource

    @Resource 其实是spring里面的注解注入. @Resource(这个注解属于J2EE的),默认安照名称进行装配,名称可以通过name属性进行指定, 如果没有指定name属性,当注解写在字段 ...