List of NP-complete problems
This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are hundreds of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).
Graphs and hypergraphs
Graphs occur frequently in everyday applications. Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn).
- 1-planarity[1]
- 3-dimensional matching[2][3]
- Bipartite dimension[4]
- Capacitated minimum spanning tree[5]
- Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem.[6]
- Clique problem[2][7]
- Complete coloring, a.k.a. achromatic number[8]
- Domatic number[9]
- Dominating set, a.k.a. domination number[10]
-
- NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem.[11]
- Bandwidth problem[12]
- Clique cover problem[2][13]
- Rank coloring a.k.a. cycle rank
- Degree-constrained spanning tree[14]
- Exact cover problem. Remains NP-complete for 3-sets. Solvable in polynomial time for 2-sets (this is amatching).[2][15]
- Feedback vertex set[2][16]
- Feedback arc set[2][17]
- Graph homomorphism problem[18]
- Graph coloring[2][19]
- Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs,forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloringthe complement of the given graph. A related problem is to find a partition that is optimal terms of the number of edges between parts.[20]
- Hamiltonian completion[21]
- Hamiltonian path problem, directed and undirected.[2][22]
- Longest path problem[23]
- Maximum bipartite subgraph or (especially with weighted edges) maximum cut.[2][24]
- Maximum independent set[25]
- Maximum Induced path[26]
- Graph intersection number[27]
- Metric dimension of a graph[28]
- Minimum k-cut
- Minimum spanning tree, or Steiner tree, for a subset of the vertices of a graph.[2] (The minimum spanning tree for an entire graph is solvable in polynomial time.)
- Pathwidth[29]
- Set cover (also called minimum cover problem) This is equivalent, by transposing the incidence matrix, to the hitting set problem.[2][30]
- Set splitting problem [31]
- Shortest total path length spanning tree[32]
- Slope number two testing[33]
- Treewidth[29]
- Vertex cover[2][34]
Mathematical programming
- 3-partition problem[35]
- Bin packing problem[36]
- Knapsack problem, quadratic knapsack problem, and several variants[2][37]
- Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric.[38]
- Bottleneck traveling salesman[39]
- Integer programming. The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete[2][40]
- Latin squares (The problem of determining if a partially filled square can be completed to form one)
- Numerical 3-dimensional matching[41]
- Partition problem[2][42]
- Quadratic assignment problem[43]
- Quadratic programming (NP-hard in some cases, P if convex)
- Subset sum problem[44]
Formal languages and string processing
- Closest string[45]
- Longest common subsequence problem[46]
- The bounded variant of the Post correspondence problem[47]
- Shortest common supersequence[48]
- String-to-string correction problem[49]
Games and puzzles
- Battleship
- Bejeweled[50]
- Bulls and Cows, marketed as Master Mind: certain optimisation problems but not the game itself.
- Candy Crush Saga[50][51]
- Donkey Kong[52]
- Eternity II
- (Generalized) FreeCell[53]
- Fillomino[54]
- Hashiwokakero[55]
- Heyawake[56]
- (Generalized) Instant Insanity[57]
- Kakuro (Cross Sums)
- Kuromasu (also known as Kurodoko)[58]
- Legend of Zelda[52]
- Lemmings (with a polynomial time limit)[59]
- Light Up[60]
- Masyu[61]
- Metroid[52]
- Minesweeper Consistency Problem[62] (but see Scott, Stege, & van Rooij[63])
- Nimber (or Grundy number) of a directed graph.[64]
- Nonograms
- Nurikabe
- Pokémon[52]
- SameGame
- Slither Link on a variety of grids[65][66][67]
- (Generalized) Sudoku[65][68]
- Super Mario Bros[52]
- Problems related to Tetris[69]
- Verbal arithmetic
Other
- Art gallery problem and its variations.
- Berth allocation problem[70]
- Betweenness
- Assembling an optimal Bitcoin block.[71]
- Boolean satisfiability problem (SAT).[2][72] There are many variations that are also NP-complete. An important variant is where each clause has exactly three literals (3SAT), since it is used in the proof of many other NP-completeness results.[73]
- Conjunctive Boolean query[74]
- Cyclic ordering
- Circuit satisfiability problem
- Uncapacitated Facility Location
- Flow Shop Scheduling Problem
- Generalized assignment problem
- Upward planarity testing[33]
- Hospitals-and-residents problem with couples
- Some problems related to Job-shop scheduling
- Monochromatic triangle[75]
- Minimum maximal independent set a.k.a. minimum independent dominating set[76]
-
- NP-complete special cases include the minimum maximal matching problem,[77] which is essentially equal to the edge dominating set problem (see above).
- Maximum common subgraph isomorphism problem[78]
- Minimum degree spanning tree
- Minimum k-spanning tree
- Metric k-center
- Maximum 2-Satisfiability[79]
- Modal logic S5-Satisfiability
- Some problems related to Multiprocessor scheduling
- Maximum volume submatrix – Problem of selecting the best conditioned subset of a larger m x n matrix. This class of problem is associated with Rank revealing QR factorizations and D optimal experimental design.[80]
- Minimal addition chains for sequences.[81] The complexity of minimal addition chains for individual numbers is unknown.[82]
- Non-linear univariate polynomials over GF[2n], n the length of the input. Indeed, over any GF[qn].
- Open-shop scheduling
- Pathwidth,[29] or, equivalently, interval thickness, and vertex separation number[83]
- Pancake sorting distance problem for strings[84]
- k-Chinese postman
- Subgraph isomorphism problem[85]
- Variations of the Steiner tree problem. Specifically, with the discretized Euclidean metric, rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric.[86]
- Set packing[2][87]
- Serializability of database histories[88]
- Scheduling to minimize weighted completion time
- Sparse approximation
- Block Sorting[89] (Sorting by Block Moves)
- Second order instantiation
- Treewidth[29]
- Testing whether a tree may be represented as Euclidean minimum spanning tree
- Three-dimensional Ising model[90]
- Vehicle routing problem
See also
List of NP-complete problems的更多相关文章
- 算导Ch34. NP Complete
1.图灵停机问题:无论在多长时间内都无法被任何一台计算机解决 问题描述:问题为H,H的输入数据为P(P是一段程序(程序也是一串字符串数据)),判定P在输入w下是否能够最终停止 H(P(w))=0 若P ...
- 简析P和NP问题的概念
简析P和NP问题的概念 本文系作者学习笔记,内容均来源于网络,如有侵权,请联系删除 P类问题:所有能用多项式时间算法计算得到结果的问题,称为多项式问题,也就是P(polynomial). 多项式时间举 ...
- (数学)P、NP、NPC、NP hard问题
概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决, ...
- P、NP、NPC、NPH问题的区别和联系
时间复杂度 时间复杂度描述了当输入规模变大时,程序运行时间的变化程度,通常使用\(O\)来表示.比如单层循环的时间复杂度为\(O(n)\),也就是说程序运行的时间随着输入规模的增大线性增长,两层循环的 ...
- P/NP问题
目录 P NP NPC NPH 写在开头 1.多项式 如公式:y = axn-bxn-1+c.Ο(log2n).Ο(n). Ο(nlog2n).Ο(n2)和Ο(n3)称为多项式时间.Ο(2n)和Ο(n ...
- Oracle常见的几种等待事件
1. CPU time CPU time其实不是真正的等待事件.是衡量CPU是否瓶颈的一个重要指标.一般来讲,一个良好的系统,CPU TIME 应该排在TOP 5 TIME Event的最前面. 当然 ...
- 边工作边刷题:70天一遍leetcode: day 89
Word Break I/II 现在看都是小case题了,一遍过了.注意这题不是np complete,dp解的time complexity可以是O(n^2) or O(nm) (取决于inner ...
- 人工智能头条(公开课笔记)+AI科技大本营——一拨微信公众号文章
不错的 Tutorial: 从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记 分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整 理 | Leo 出 ...
- 201871030108-冯永萍 实验二 个人项目— D{0-1}背包问题项目报告
项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...
随机推荐
- RHEL7 利用单个物理网卡实现VLAN
使用nmcli创建网桥配置 #nmcli connection add type bridge con-name br0 stp no 使用nmcli创建VLAN设备配置 #nmcli connect ...
- 使用vbox构建局域网络
update: 也可以启用DHCP自动分配IP地址.(看到过的某一篇博文写过要使用这个服务还得自己搭--就没有动手去实践一下直接手动分配了静态的IP.偶然尝试了一下发现动态IP分配和手动静态IP分配都 ...
- 关于SQL while 循环嵌套 外部循环数据无法进入内部循环
下面一般是,作为SQL新手第一次写循环嵌套的办法,但是大家会发现一个问题,那就是变量@i总是不能进入第二个循环. declare @i int ,@j int, @k int set @j = 1 - ...
- python基础知识-12-模块的了解
python其他知识目录 1.模块介绍: Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句.模块让你能够有逻辑地组织你 ...
- sprint2 (第八天)
今天课多,没做什么功能.这个sprint定的目标比较高,要实现的功能较多,可能完成不了目标值.因为GitHub下载和上传很慢,经常失败,所以这几天都没有更新GitHub,功能明天早点实现然后上传到Gi ...
- 互评Beta版本——杨老师粉丝群——Pinball
互评beta版本 杨老师粉丝群——<PinBall> 一.基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题 (1)N(Need,需求) 随着年龄的增长, ...
- No.110_第三次团队会议
前端的易帜 前端在整个软件中有着举足轻重的地位.前端设计一般可以理解为视觉设计,前端开发则是前台代码的实现. 随着科技水平的提高和生产力的提高,人民对于审美的要求逐渐增高.在没有科技壁垒的情况下,是否 ...
- 《Java学习笔记JDK8》学习总结
chapter 6 继承与多态 6.1何谓继承 1.继承的定义:继承就是避免多个类间重复定义共同行为. 2.总结:教材中通过设计一款RPG游戏的部分代码向我们展示了“重复”程序代码的弊端,为了改进 ...
- 听说 —— beta冲刺总结
听说 -- beta冲刺总结 beta冲刺成员名单 姓名 学号 负责方向 个人主页 周龙荣 031402543 前端页面.跳转 http://www.cnblogs.com/ZHOULR/ 李家鹏 0 ...
- js中的extend,可实现浅拷贝深拷贝
js中的extend 1. JS中substring与substr的区别 之前在项目中用到substring方法,因为C#中也有字符串的截取方法Substring方法,当时也没有多想就误以为 ...