解题:POI 2011 Strongbox
首先洛谷的题面十分的劝退(至少对我这个菜鸡来说是这样),我来解释一下(原来的英文题面):
有一个有若干个密码(每个密码都可以开箱子)的密码箱,密码是在$0$到$n-1$的数中的,且所有的密码都满足一个条件:如果$x$是密码,$y$也是密码($x$可能等于$y$),那么$(x+y)\%n$也是密码。现在有一个人在试密码,他试了$k$个数,前$k-1$个都是错的,第$k$个是对的。现在你要求这个密码箱最多有多少不同的密码。
显然如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码。根据裴蜀定理,我们先让$num_k$和$n$取一个gcd得到$g$,然后把$g$分解因数得到$fac$个因数。从小到大枚举因数$f$,如果对于一个因数$f$前$k-1$个数都不能整除它,说明它符合题意,这个时候答案就是$\frac{n}{f}$,也就是取它的所有倍数。
然后我们发现这个玩意直接枚举来做的话理论上最差是$O(sqrt(n)k)$的,看起来根本过不去(实际上可以水过去),于是学习了一种筛法的解法。
我们换一种方法检查每个因数是否合法:首先标记$i=1->k-1$中所有的$gcd(num_i,num_k)$为不可取。接下来要用到一个性质:如果一个数$x$不可取,那么$x$所有的因数也一定都不可取(不要搞反了)。这样我们从大到小枚举一下$num_k$的所有因数$fac_i$,每次从小到大枚举$num_k$的质因数$pfac_j$,每次查看$num'=fac_i*pfac_j$(如果这个数存在的话),如果它不可取就将当前的因数标记为不可取,最后正着扫一遍就行了。复杂度$O(fac$ $log(n)log(fac))$(根本跑不满)
Update:讲了以后收到了很多疑问,筛答案那块没啥问题,主要是证明“显然如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码” 这里(根本不显然=。=)和“根据裴蜀定理,我们先让$num_k$和$n$取一个gcd” 这里(为什么取gcd=。=?)。发现自己根本讲不清楚(完全暴露了数学鶸的本质233),看来还是要提高一个知识水平orz
现在更新一下详细证明:
1.为什么“如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码”
这个问题有一个更“朴实”的问法:凭什么你可以用一个$x$和它的所有倍数表示出答案,而不是两个数组合呢?
(讲的时候极尬,完全不会讲TAT)
我们首先证明一个东西:如果$x$是密码,$y$是密码,那么$gcd(x,y)$也是密码
这个东西可以由裴蜀定理得出,问题是裴蜀定理说的是整数,我们要求必须是正整数
不过没关系,因为我们在模$n$剩余系下做,所以我们想$-ax$就等价于$+(kn-a)x(a,k∈N*)$
证明了这个,那么所有“两个数的组合”就都可以表示成它们的$gcd$了,于是问题解决
2.为什么“先让$num_k$和$n$取一个gcd”
暴力做应该不用取,但是筛的时候必须取
首先裴蜀定理告诉我们这样做了之后还是对的
那么为什么必须这样做呢?因为$num_k$中可能还有一个(相对于前$k-1$个数)独特的因数,然后你在排除的时候这个因数根本排不掉,你就把它当成答案了。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long p[N],fac[N],pfac[N];
long long n,k,g,tot,cnt;
bool una[N];
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
void getf(long long maxx)
{
for(long long i=;i*i<=maxx;i++)
if(maxx%i==)
{
fac[++tot]=i;
if(i*i!=maxx)
fac[++tot]=maxx/i;
}
}
void getpf(long long maxx)
{
for(long long i=;i*i<=maxx;i++)
if(maxx%i==)
{
pfac[++cnt]=i;
while(maxx%i==) maxx/=i;
}
if(maxx!=) pfac[++cnt]=maxx;
}
int main()
{
scanf("%lld%lld",&n,&k);
for(int i=;i<=k;i++)
scanf("%lld",&p[i]);
if(!p[k]&&k==) printf("%lld",n),exit();
p[k]=gcd(p[k],n),getf(p[k]),getpf(p[k]);
sort(fac+,fac++tot);
for(int i=;i<k;i++)
una[lower_bound(fac+,fac++tot,gcd(p[i],p[k]))-fac]=true;
for(int i=tot;i;i--)
if(!una[i])
for(int j=;j<=cnt&&fac[i]*pfac[j]<=n;j++)
{
long long tmp=fac[i]*pfac[j];
int pos=lower_bound(fac+,fac++tot,tmp)-fac;
if(fac[pos]==tmp&&una[pos]) {una[i]=true; break;}
}
for(int i=;i<=tot;i++)
if(!una[i]) {printf("%lld",n/fac[i]); break;}
return ;
}
解题:POI 2011 Strongbox的更多相关文章
- 解题:POI 2011 Dynamite
题面 从零开始的DP学习系列之叁 树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况 显然的二分答案, ...
- 【BZOJ 2216】【POI 2011】Lightning Conductor
http://www.lydsy.com/JudgeOnline/problem.php?id=2216 学习了一下决策单调性. 这道题决策单调性比较明显,不详细证了. 对于一个决策i,如果在i之前的 ...
- 【BZOJ 2212】【POI 2011】Tree Rotations
http://www.lydsy.com/JudgeOnline/problem.php?id=2212 自下而上贪心. 需要用权值线段树来记录一个权值区间内的出现次数. 合并线段树时统计逆序对的信息 ...
- bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...
- [ POI 2011 ] Party
\(\\\) \(Description\) 给定一张 \(N\ (\ N\equiv 0\pmod{3}\ )\) 个节点,,\(M\)条边的图,并且保证该图存在一个大小至少为\(\frac{2}{ ...
- [ POI 2011 ] Dynamite
\(\\\) \(Description\) 一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少. \(N ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- Solution -「POI 2011」「洛谷 P3527」MET-Meteors
\(\mathcal{Description}\) Link. 给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上 ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
随机推荐
- Redis源码阅读(三)集群-连接初始化
Redis源码阅读(三)集群-连接建立 对于并发请求很高的生产环境,单个Redis满足不了性能要求,通常都会配置Redis集群来提高服务性能.3.0之后的Redis支持了集群模式. Redis官方提供 ...
- 笔记:《机器学习训练秘籍》——吴恩达deeplearningai微信公众号推送文章
说明 该文为笔者在微信公众号:吴恩达deeplearningai 所推送<机器学习训练秘籍>系列文章的学习笔记,公众号二维码如下,1到15课课程链接点这里 该系列文章主要是吴恩达先生在机器 ...
- 如何防范和应对Redis勒索,腾讯云教你出招
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...
- Android工程导入Unity3D(避坑版)
最近与各种牛逼的项目管理软件打交道,比如SourceTree,要看英文版的才看得懂,中文反而不会用!... 这篇博客适合没怎么接触过安卓的小伙伴们,网上也有很多相关的教程,但是大多都没有具体的操作或则 ...
- 10.openldap备份与恢复
备份方式 一.使用slapcat指令备份 使用slapcat备份后的数据 经过相关无用条目处理,即可实现数据上的条目备份 备份指令如下 #备份 #slapcat -v -l openldap-back ...
- chattr和lsattr命令详解
基础命令学习目录首页 原文链接:http://www.ha97.com/5172.html PS:有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chat ...
- join命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/agilework/archive/2012/04/18/2454877.html 功能说明:将两个文件中,指定栏位内容 ...
- Django_缓存
目录 Django缓存的介绍 配置(settings.py设置不同缓存介质) 应用(全局.视图函数.模板) 实测 Django缓存的介绍 除了Django这个web框架之外.其他框架都没有缓存.Dja ...
- Last Daily Scrum (2015/11/9)
今晚我们终于完成了新版本的爬虫工作,可以替换掉之前部署在服务器上的那个爬虫了.由于周末大家各种原因导致了我们迭代一的截止日没有完成所有任务,所以今天晚上大家加班加点终于把这一迭代的爬虫项目完成了. 成 ...
- No.1_NABCD模型分析
Reminder 之 NABCD模型分析 定位 多平台的闹钟提醒软件. 在安卓市场发布软件,发布后一周的用户量为1000. N (Need 需求) 这个 ...