解题:POI 2011 Strongbox
首先洛谷的题面十分的劝退(至少对我这个菜鸡来说是这样),我来解释一下(原来的英文题面):
有一个有若干个密码(每个密码都可以开箱子)的密码箱,密码是在$0$到$n-1$的数中的,且所有的密码都满足一个条件:如果$x$是密码,$y$也是密码($x$可能等于$y$),那么$(x+y)\%n$也是密码。现在有一个人在试密码,他试了$k$个数,前$k-1$个都是错的,第$k$个是对的。现在你要求这个密码箱最多有多少不同的密码。
显然如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码。根据裴蜀定理,我们先让$num_k$和$n$取一个gcd得到$g$,然后把$g$分解因数得到$fac$个因数。从小到大枚举因数$f$,如果对于一个因数$f$前$k-1$个数都不能整除它,说明它符合题意,这个时候答案就是$\frac{n}{f}$,也就是取它的所有倍数。
然后我们发现这个玩意直接枚举来做的话理论上最差是$O(sqrt(n)k)$的,看起来根本过不去(实际上可以水过去),于是学习了一种筛法的解法。
我们换一种方法检查每个因数是否合法:首先标记$i=1->k-1$中所有的$gcd(num_i,num_k)$为不可取。接下来要用到一个性质:如果一个数$x$不可取,那么$x$所有的因数也一定都不可取(不要搞反了)。这样我们从大到小枚举一下$num_k$的所有因数$fac_i$,每次从小到大枚举$num_k$的质因数$pfac_j$,每次查看$num'=fac_i*pfac_j$(如果这个数存在的话),如果它不可取就将当前的因数标记为不可取,最后正着扫一遍就行了。复杂度$O(fac$ $log(n)log(fac))$(根本跑不满)
Update:讲了以后收到了很多疑问,筛答案那块没啥问题,主要是证明“显然如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码” 这里(根本不显然=。=)和“根据裴蜀定理,我们先让$num_k$和$n$取一个gcd” 这里(为什么取gcd=。=?)。发现自己根本讲不清楚(完全暴露了数学鶸的本质233),看来还是要提高一个知识水平orz
现在更新一下详细证明:
1.为什么“如果$x$是一个密码,那么$ax(a∈N\&\&ax<n)$也都是密码”
这个问题有一个更“朴实”的问法:凭什么你可以用一个$x$和它的所有倍数表示出答案,而不是两个数组合呢?
(讲的时候极尬,完全不会讲TAT)
我们首先证明一个东西:如果$x$是密码,$y$是密码,那么$gcd(x,y)$也是密码
这个东西可以由裴蜀定理得出,问题是裴蜀定理说的是整数,我们要求必须是正整数
不过没关系,因为我们在模$n$剩余系下做,所以我们想$-ax$就等价于$+(kn-a)x(a,k∈N*)$
证明了这个,那么所有“两个数的组合”就都可以表示成它们的$gcd$了,于是问题解决
2.为什么“先让$num_k$和$n$取一个gcd”
暴力做应该不用取,但是筛的时候必须取
首先裴蜀定理告诉我们这样做了之后还是对的
那么为什么必须这样做呢?因为$num_k$中可能还有一个(相对于前$k-1$个数)独特的因数,然后你在排除的时候这个因数根本排不掉,你就把它当成答案了。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long p[N],fac[N],pfac[N];
long long n,k,g,tot,cnt;
bool una[N];
long long gcd(long long a,long long b)
{
return b?gcd(b,a%b):a;
}
void getf(long long maxx)
{
for(long long i=;i*i<=maxx;i++)
if(maxx%i==)
{
fac[++tot]=i;
if(i*i!=maxx)
fac[++tot]=maxx/i;
}
}
void getpf(long long maxx)
{
for(long long i=;i*i<=maxx;i++)
if(maxx%i==)
{
pfac[++cnt]=i;
while(maxx%i==) maxx/=i;
}
if(maxx!=) pfac[++cnt]=maxx;
}
int main()
{
scanf("%lld%lld",&n,&k);
for(int i=;i<=k;i++)
scanf("%lld",&p[i]);
if(!p[k]&&k==) printf("%lld",n),exit();
p[k]=gcd(p[k],n),getf(p[k]),getpf(p[k]);
sort(fac+,fac++tot);
for(int i=;i<k;i++)
una[lower_bound(fac+,fac++tot,gcd(p[i],p[k]))-fac]=true;
for(int i=tot;i;i--)
if(!una[i])
for(int j=;j<=cnt&&fac[i]*pfac[j]<=n;j++)
{
long long tmp=fac[i]*pfac[j];
int pos=lower_bound(fac+,fac++tot,tmp)-fac;
if(fac[pos]==tmp&&una[pos]) {una[i]=true; break;}
}
for(int i=;i<=tot;i++)
if(!una[i]) {printf("%lld",n/fac[i]); break;}
return ;
}
解题:POI 2011 Strongbox的更多相关文章
- 解题:POI 2011 Dynamite
题面 从零开始的DP学习系列之叁 树形DP的基本(常见?)思路:先递归进儿子,然后边回溯边决策,设状态时常设$dp[x]$表示以$x$为根的子树中(具体分析算不算$x$这个点)的情况 显然的二分答案, ...
- 【BZOJ 2216】【POI 2011】Lightning Conductor
http://www.lydsy.com/JudgeOnline/problem.php?id=2216 学习了一下决策单调性. 这道题决策单调性比较明显,不详细证了. 对于一个决策i,如果在i之前的 ...
- 【BZOJ 2212】【POI 2011】Tree Rotations
http://www.lydsy.com/JudgeOnline/problem.php?id=2212 自下而上贪心. 需要用权值线段树来记录一个权值区间内的出现次数. 合并线段树时统计逆序对的信息 ...
- bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...
- [ POI 2011 ] Party
\(\\\) \(Description\) 给定一张 \(N\ (\ N\equiv 0\pmod{3}\ )\) 个节点,,\(M\)条边的图,并且保证该图存在一个大小至少为\(\frac{2}{ ...
- [ POI 2011 ] Dynamite
\(\\\) \(Description\) 一棵\(N\)个节点的树,树上有\(M\)个节点是关键点,选出\(K\)个特殊点,使得所有关键点到特殊点的距离中最大的最小,输出最大值最小为多少. \(N ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- Solution -「POI 2011」「洛谷 P3527」MET-Meteors
\(\mathcal{Description}\) Link. 给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上 ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
随机推荐
- [持久更新] 剑指offer题目Python做题记录
第一题 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路:先快速定位到 ...
- ossec安装
安装 安装要求 对于Unix系统来说,OSSEC只需要GNU的make.gcc和libc.推荐使用OpenSSL,但仅属于一个可选项.而且,通常您只需在一个系统上做编译操作,然后将二进制程序复制到其他 ...
- 使用vbox构建局域网络
update: 也可以启用DHCP自动分配IP地址.(看到过的某一篇博文写过要使用这个服务还得自己搭--就没有动手去实践一下直接手动分配了静态的IP.偶然尝试了一下发现动态IP分配和手动静态IP分配都 ...
- 第39次Scrum会议(12/5)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/12/5 11:35~11:57,总计22min.地点:东北师 ...
- YQCB冲刺周第七天
站立会议 任务看板 燃尽图 今天的任务为实现个人设置中的修改密码.设置金额的功能.以及界面的美化. 遇到的问题为修改自己密码时获得当前用户的id问题.
- 冲刺One之站立会议3 /2015-5-16
2015-5-16 今天我们主要完成一部分服务器端的内容,因为只有服务器端完成了主要功能其他的部分才可以测试有没有成功实现目标.具体包括服务器登陆时需要的端口号.启动时间.服务器状态的显示.在线人数等 ...
- struts2 中怎样获取HttpServletReqest
struts2 中怎样获取HttpServletRequest 和HttpServletResponse 提供两种方法 第一种通过调用ServletActionContext这个类源代码中提供这个对象 ...
- linux 常用命令-文件、文件夹管理
1. 创建文件夹: mkdir dirName 删除文件夹: rm -rf * 删除当前目录下的所有文件以及文件夹(非交互式) rm -r --recursive 递归式删除所删除目录以及子目录(有 ...
- stateful openflow------整理openstate原理以及具体应用
openstate基本思想就是控制器下放一部分功能,交换机不再是简单的dumb,而是保留一些简单的wise. 论文中以端口锁定为例,提出了米粒型状态机在交换机内部的应用从而可以大大减少交换机和控制器之 ...
- APP分析----饿了么
产品 饿了么 选择原因:有了外卖就可以轻松拥有一个不用出门也饿不着的爽歪歪周末. 第一部分 调研, 评测 下载软件并使用起来,描述最简单直观的个人第一次上手体验. 主界面: 第一次上手是大一 ...