Description

在遥远的S星系中一共有N个星球,编号为1…N。其中的一些星球决定组成联盟,以方便相互间的交流。但是,组成联盟的首要条件就是交通条件。初始时,在这N个星球间有M条太空隧道。每条太空隧道连接两个星球,使得它们能够相互到达。若两个星球属于同一个联盟,则必须存在一条环形线路经过这两个星球,即两个星球间存在两条没有公共隧道的路径。为了壮大联盟的队伍,这些星球将建设P条新的太空隧道。这P条新隧道将按顺序依次建成。一条新轨道建成后,可能会使一些星球属于同一个联盟。你的任务是计算出,在一条新隧道建设完毕后,判断这条新轨道连接的两个星球是否属于同一个联盟,如果属于同一个联盟就计算出这个联盟中有多少个星球。

Input

第1行三个整数N,M和P,分别表示总星球数,初始时太空隧道的数目和即将建设的轨道数目。

第2至第M+1行,每行两个整数,表示初始时的每条太空隧道连接的两个星球编号。

第M+2行至第M+P+1行,每行两个整数,表示新建的太空隧道连接的两个星球编号。

这些太空隧道按照输入的顺序依次建成。

1≤N,M,P≤200000

Output

输出共P行。

如果这条新的太空隧道连接的两个星球属于同一个联盟,就输出一个整数,表示这两个星球所在联盟的星球数。

如果这条新的太空隧道连接的两个星球不属于同一个联盟,就输出"No"(不含引号)。

Sample Input

5 3 4

1 2

4 3

4 5

2 3

1 3

4 5

2 4

Sample Output

No

3

2

5

HINT

Solution

又是一个LCT的特殊操作——维护边双

其实就是缩点

LCT里真正维护的是那些缩了点之后的联通块的信息,称之为天人交战,与原图中的单个节点毫无关系(除了本身是一个联通块的),它的层次高那么一层

所以每次调用LCT的函数之前,都要先找到它所属的联通块的编号,再用这个编号在LCT里进行操作。那么每次跳节点的时候,要保证操作的节点是在天人层次,每次就跳到那个节点指向的联通块上去

如何记录每个点所属的联通块?用一个类似并查集的东西,记录它指向的联通块

然后在LCT外用一个真正的并查集记录两点的连通性

对于维护联通块,如果 \(u\) , \(v\) 已经联通,再要连上一条边,那肯定就有环了,也就有边双了,那这一个环里的联通块全都要缩起来,那就一个dfs,遍历环里的所有联通块,把他们都指向一个联通块就行了,同时维护题目要求的size

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=200000+10;
int n,m,p,fa[MAXN];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],rev[MAXN],size[MAXN],stack[MAXN],cnt,bel[MAXN];
inline void init()
{
for(register int i=1;i<=n;++i)bel[i]=i,size[i]=1;
}
inline int find(int x)
{
return bel[x]==x?x:bel[x]=find(bel[x]);
}
inline bool nroot(int x)
{
return lc(find(fa[x]))==x||rc(find(fa[x]))==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void dfs(int x,int rt)
{
if(lc(x))dfs(lc(x),rt);
if(rc(x))dfs(rc(x),rt);
if(x!=rt)bel[x]=rt,size[rt]+=size[x];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=find(fa[x]),p=find(fa[f]),c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=find(fa[i]))stack[++cnt]=find(fa[i]);
while(cnt)pushdown(stack[cnt--]);
for(register int y=find(fa[x]);nroot(x);rotate(x),y=find(fa[x]))
if(nroot(y))rotate((lc(y)==x)==(lc(find(fa[y]))==y)?y:x);
}
inline void access(int x)
{
for(register int y=0;x;x=find(fa[y=x]))splay(x),rc(x)=y;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline int add(int u,int v)
{
u=T.find(u),v=T.find(v);
int x=found(u),y=found(v);
if(u==v)return T.size[v];
if(x!=y)
{
fa[x]=y,T.link(u,v);
return -1;
}
T.split(u,v);T.dfs(T.ch[v][0],v);
return T.size[v];
}
int main()
{
read(n);read(m);read(p);
T.init();
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)
{
int u,v;
read(u);read(v);
add(u,v);
}
while(p--)
{
int u,v,res;
read(u);read(v);
if(~(res=add(u,v)))write(res,'\n');
else puts("No");
}
return 0;
}

【刷题】BZOJ 4998 星球联盟的更多相关文章

  1. bzoj 4998 星球联盟

    新技能 get √ :LCT 维护边双连通分量 这题题意就是动态加边,每次求边的两端是否在一个边双连通分量里,输出 "No" 或者边双连通分量的大小 可以用两个并查集分别记录连通性 ...

  2. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

  3. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

  4. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  5. 【刷题】BZOJ 4176 Lucas的数论

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  6. BZOJ第一页刷题计划

    BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...

  7. 【刷题】BZOJ 2260 商店购物

    Description Grant是一个个体户老板,他经营的小店因为其丰富的优惠方案深受附近居民的青睐,生意红火.小店的优惠方案十分简单有趣.Grant规定:在一次消费过程中,如果您在本店购买了精制油 ...

  8. 【刷题】BZOJ 4566 [Haoi2016]找相同字符

    Description 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. Input 两行,两个字符串s1,s2,长度分别为 ...

  9. 【刷题】BZOJ 3365 [Usaco2004 Feb]Distance Statistics 路程统计

    Description 在得知了自己农场的完整地图后(地图形式如前三题所述),约翰又有了新的问题.他提供 一个整数K(1≤K≤109),希望你输出有多少对农场之间的距离是不超过K的. Input 第1 ...

随机推荐

  1. TensorFlow Python2.7环境下的源码编译(三)编译

    一.源代码编译 这里要为仅支持 CPU 的 TensorFlow 构建一个 pip 软件包,需要调用以下命令: $ bazel build --cxxopt="-D_GLIBCXX_USE_ ...

  2. 执行sh脚本报“/usr/bin/env: "sh\r": 没有那个文件或目录”错误

    出现这个错误的原因是出错的语句后面多了“\r”这个字符,换言之,脚本文件格式的问题,我们只需要把格式改成unix即可: vi xx.sh :set ff :set ff=unix :wq!

  3. Shader Variants 打包遇到的问题

    1. 遇到的问题 最常见的是打包到手机后效果与PC上不一致,具体情况比如: 光照贴图失效 雾失效 透明或者cutoff失效 以上首先需要检查的地方是Shader变体的编译设置 2. 超级着色器编译成N ...

  4. mysql批量新增或者更新

    1.批量更新或者新增 1.单个新增或者更新 keyProperty新增完之后返回Id值

  5. FM在特征组合中的应用

    原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun 特征组合   x1年龄 x2北京 x3上海 x4深圳 x5男 x6女 用户1 ...

  6. linux执行命令返回码释义

    Linux 操作系统错误代码解释 0.错误代码1-10 OS error code 0: Success 操作系统错误代码0:成功 OS error code 1: Operation not per ...

  7. Sqlserver 每日订单半小时数据统计

    ) '订单数' FROM (SELECT CASE THEN ), create_at, ) ),DATEPART(hh, create_at))+':00:00') ELSE ), create_a ...

  8. Scrum Meeting 10.27

    1.会议内容: 姓名 今日任务 明日任务 预估时间(h) 徐越 配置SQLserver 学习本地和服务器之间的通信 4 卞忠昊 找上届代码的bug 学习安卓布局(layout)的有关知识,研究上届学长 ...

  9. Chapter 2 软件过程

    软件发展前期,人们只重视结果而忽略了过程,随着技术的成熟,软件过程的重要性被日益发觉.软件过程是软件工程人员为了获得软件产品而在软件工具的支持下实施的一系列软件工程活动. 软件过程的基本活动包括问题提 ...

  10. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...