[vjudge contest15(xjoi)] C - Berzerk
Rick and Morty are playing their own version of Berzerk (which has nothing in common with the famous Berzerk game). This game needs a huge space, so they play it with a computer.
In this game there are n objects numbered from 1 to n arranged in a circle (in clockwise order). Object number 1 is a black hole and the others are planets. There's a monster in one of the planet. Rick and Morty don't know on which one yet, only that he's not initially in the black hole, but Unity will inform them before the game starts. But for now, they want to be prepared for every possible scenario.
Each one of them has a set of numbers between 1 and n - 1 (inclusive). Rick's set is s1 with k1 elements and Morty's is s2 with k2 elements. One of them goes first and the player changes alternatively. In each player's turn, he should choose an arbitrary number like x from his set and the monster will move to his x-th next object from its current position (clockwise). If after his move the monster gets to the black hole he wins.
Your task is that for each of monster's initial positions and who plays first determine if the starter wins, loses, or the game will stuck in an infinite loop. In case when player can lose or make game infinity, it more profitable to choose infinity game.
Input
The first line of input contains a single integer n (2 ≤ n ≤ 7000) — number of objects in game.
The second line contains integer k1 followed by k1 distinct integers s1, 1, s1, 2, ..., s1, k1 — Rick's set.
The third line contains integer k2 followed by k2 distinct integers s2, 1, s2, 2, ..., s2, k2 — Morty's set
1 ≤ ki ≤ n - 1 and 1 ≤ si, 1, si, 2, ..., si, ki ≤ n - 1 for 1 ≤ i ≤ 2.
Output
In the first line print n - 1 words separated by spaces where i-th word is "Win" (without quotations) if in the scenario that Rick plays first and monster is initially in object number i + 1 he wins, "Lose" if he loses and "Loop" if the game will never end.
Similarly, in the second line print n - 1 words separated by spaces where i-th word is "Win" (without quotations) if in the scenario that Morty plays first and monster is initially in object number i + 1 he wins, "Lose" if he loses and "Loop" if the game will never end.
Example
52 3 23 1 2 3
Lose Win Win LoopLoop Win Win Win
84 6 2 3 42 3 6
Win Win Win Win Win Win WinLose Win Lose Lose Win Lose Lose 题目大意是:有n个位置1,2,3……n,围成1个圈,某个物体最开始的位置不在1,两个人轮流操作,每个人操作时可以让这个物体顺时针运动一些位置,使物体最终到达1号位置的人胜。求:物体初始在每个位置(不包括1),两个人分别先手的胜负情况。 感谢HX提供思路。。。 每个人每个状态无非就是三种情况:必胜(Win),必败(Lose),无法到达(Loop)。这其实是博弈论。 由于必败状态必定由所有必胜状态可推得,必胜状态只要1个必败状态就可以推出,那我们可以通过BFS/DFS的方式实现。设状态(x,y)表示当前是y操作,物体位置在x。那么(1,0)和(1,1)必然是必败状态。 假设我们使用BFS,当前状态为(ux,uy),下一个状态为(vx,vy),那么事实上是由(vx,vy)推得(ux,uy)。但是我们知道的是最终状态,求的是初始状态,所以要反着来推。 如果(vx,vy)这个状态还没有确定,则: 如果(ux,uy)必败,(vx,vy)必胜; 如果(ux,uy)必胜,则要看看其他状态(同一层的)是否全部必胜,若是,则(vx,vy)必败。 代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
;
struct node{
int x,f;
};
],a[][maxn],f[][maxn],cnt[][maxn];
int read(){
,f=; char ch=getchar();
'){if (ch=='-') f=-f; ch=getchar();}
+ch-',ch=getchar();
return x*f;
}
int main(){
n=read();
; i<; i++){
K[i]=read(); ; j<K[i]; j++) a[i][j]=read();
}
queue <node> Q; Q.push((node){,}); Q.push((node){,});
memset(f,,][]=f[][]=;
; i<; i++)
; j<=n; j++) cnt[i][j]=K[i];
for (; !Q.empty(); Q.pop()){
node u=Q.front(),v; v.f=-u.f;
; i<K[v.f]; i++){
v.x=u.x-a[v.f][i]; ) v.x+=n;
if (f[v.f][v.x]) continue;
) f[v.f][v.x]=,Q.push((node){v.x,v.f});
else{
cnt[v.f][v.x]--; ) f[v.f][v.x]=,Q.push((node){v.x,v.f});
}
}
}
; i<; i++,putchar('\n'))
; j<=n; j++) printf(??"Win":"Lose");
;
}
[vjudge contest15(xjoi)] C - Berzerk的更多相关文章
- [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】
题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...
- [XJOI NOI2015模拟题13] B 最小公倍数 【找规律】
题目链接:XJOI - NOI2015-13 - B 题目分析 通过神奇的观察+打表+猜测,有以下规律和性质: 1) 删除的 n 个数就是 1~n. 2) 当 c = 2 时,如果 n + 1 是偶数 ...
- [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】
题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...
- [XJOI NOI02015训练题7] B 线线线 【二分】
题目链接:XJOI - NOI2015-07 - B 题目分析 题意:过一个点 P 的所有直线,与点集 Q 的最小距离是多少?一条直线与点集的距离定义为点集中每个点与直线距离的最大值. 题解:二分答案 ...
- [刷题]Codeforces 786A - Berzerk
http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...
- Vjudge Code
Stylus @-moz-document url-prefix("https://cn.vjudge.net/"), url-prefix("https://vjudg ...
- Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索
A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...
- 专题[vjudge] - 数论0.1
专题[vjudge] - 数论0.1 web-address : https://cn.vjudge.net/contest/176171 A - Mathematically Hard 题意就是定义 ...
- 【XJOI】【NOI考前模拟赛7】
DP+卡常数+高精度/ 计算几何+二分+判区间交/ 凸包 首先感谢徐老师的慷慨,让蒟蒻有幸膜拜了学军的神题.祝NOI2015圆满成功 同时膜拜碾压了蒟蒻的众神QAQ 填填填 我的DP比较逗比……( ...
随机推荐
- 原生JS取代一些JQuery方法的简单实现
原生JS取代一些JQuery方法的简单实现 下面小编就为大家带来一篇原生JS取代一些JQuery方法的简单实现.小编觉得挺不错的,现在就分享给大家,也给大家做个参考.一起跟随小编过来看看吧 1.选 ...
- 【NOIP 2016】Day1 T2 天天爱跑步
Problem Description 小 C 同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...
- linux 进阶命令笔记(12月26日)
1. df 指令 作用:查看磁盘空间 用法: #df -h -h 表示以可读性较高的形式展示大小 2.free 指令 作用:查看内存使用情况 语法:#free -m -m表 ...
- Python lambda 表达式
def ds(x): *x+ print(ds()) g = lambda x:*x+ print(g()) #------------ def sf(a,b): return a+b print(s ...
- 关于set和map迭代器支持的运算
问题: 曾经想遍历一个set遍历.当时是这样写的: set<int>::iterator b = a.begin()+1 后来发现程序报错.究其原因是,set迭代器不支持加减数操作. 查看 ...
- 细菌多位点序列分型(Multilocus sequence typing,MLST)的原理及分型方法
摘 要: 多位点序列分型(MLST)是一种基于核酸序列测定的细菌分型方法,通过PCR扩增多个管家基因内部片段,测定其序列,分析菌株的变异,从而进行分型.MLST被广泛应用于病原菌.环境菌和真核生物中. ...
- 力扣(LeetCode)1016. 子串能表示从 1 到 N 数字的二进制串
给定一个二进制字符串 S(一个仅由若干 '0' 和 '1' 构成的字符串)和一个正整数 N,如果对于从 1 到 N 的每个整数 X,其二进制表示都是 S 的子串,就返回 true,否则返回 false ...
- CSS 控制鼠标在元素停留的样式
以下资料来自网络,收藏学习总结用: 有时候需要改变鼠标样式,DIV 可以改成手型等,A也可以改成光标形式 巧合要用到鼠标样式效果,就顺便整理了下十五种CSS鼠标样式,小例子供大家使用啊.CSS鼠标样式 ...
- spring ----> 事务:传播机制和接口TransactionDefinition
spring事务: 编程式事务(细粒度) 声明式事务(粗粒度,xml或者注解格式) spring接口TransactionDefinition: TransactionDefinition接口定义了事 ...
- 在mk/rte.app.mk 256行加echo $(O_TO_EXE_DO)查看GCC参数
在mk/rte.app.mk 256行加echo $(O_TO_EXE_DO)查看GCC参数,如: