M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?

通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数。

因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式。

 #include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=;
const int mmod=;
struct mat{
int r,c;
ll m[][];
void clear(){
for(int i=;i<=r;i++)memset(m[i],,sizeof(m[i]));
}
}; int read(){
int x=;
char c=getchar();
while(c>''||c<'')c=getchar();
while(c>=''&&c<=''){
x=x*+c-'';
c=getchar();
}
return x;
} mat MatMul(mat &m1,mat &m2){
mat tmp;
tmp.r=m1.r;
tmp.c=m2.c;
int i,j,k;
for(i=;i<=tmp.r;i++){
for(j=;j<=tmp.c;j++){
ll t=;
for(k=;k<=m1.c;k++){
t=(t+(m1.m[i][k]*m2.m[k][j])%mmod)%mmod;
}
tmp.m[i][j]=t;
}
}
return tmp;
} mat MatQP(mat &a,int n){
mat ans,tmp=a;
ans.r=ans.c=a.r;
memset(ans.m,,sizeof(ans.m));
for(int i=;i<=ans.r;i++){
ans.m[i][i]=;
}
while(n){
if(n&)ans=MatMul(ans,tmp);
n>>=;
tmp=MatMul(tmp,tmp);
}
return ans;
} ll QP(ll a,ll n){
ll tmp=a,ans=;
while(n){
if(n&)ans=ans*tmp%mod;
tmp=tmp*tmp%mod;
n>>=;
}
return ans%mod;
} int main(){
int x,y,n;
mat t,tmp;
t.r=;t.c=;
t.clear();
t.m[][]=t.m[][]=t.m[][]=;
mat a;
a.r=;
a.c=;
a.m[][]=;
a.m[][]=;
ll ans;
while(scanf("%d%d%d",&x,&y,&n)!=EOF){
if(n==)printf("%d\n",x);
else{
tmp=MatQP(t,n-);
tmp=MatMul(tmp,a);
ans=QP(x,tmp.m[][])*QP(y,tmp.m[][])%mod;
printf("%lld\n",ans);
}
}
return ;
}

hdu4549 M斐波那契数列 矩阵快速幂+快速幂的更多相关文章

  1. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  4. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  5. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  8. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  9. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

随机推荐

  1. Win10系列:VC++文件选取

    在C++/CX的Windows::Storage::Pickers命名空间中定义了一个FileOpenPicker类,使用此类可以新建一个文件打开选取器,并可以通过这个类里面包含的属性和函数选取一个或 ...

  2. 驱动链表(LIST_ENTRY)

    DDK提供了两种链表的数据结构,双向链表和单向链表,其定义如下: typedef struct _LIST_ENTRY { struct _LIST_ENTRY *Flink; struct _LIS ...

  3. matlab中diff的用法

    若是diff(),括号里的元素为向量,那么前一个减后一个即为diff后的结果: 若diff(),括号里的元素为矩阵,那么下一行减上一行即为diff 后的结果:

  4. 10.Python-第三方库requests详解(二)

    Requests 是用Python语言编写,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTT ...

  5. Linux平台搭建-----C语言

    下面内容是新手上路,各位高手路过勿喷!因为我第一次发布,可能页面设置或者其他做的不好,还请见谅~该文章只是作为我学习C语言的笔记以及记录学习进程的. 零基础学习C语言---搭建Linux平台开发环境 ...

  6. shell脚本实例-批量检查多个网站地址是否正常

    #!/usr/bin/bash [ -f /etc/init.d/functions ] && . /etc/init.d/functions array=( http://www.w ...

  7. linux之ls、ll

    ls == list,根据不同的选项,列举指定目录或文件的相关信息,是Unix/Linux下最常用的命令之一,cd到某一目录下后执行的第一个命令. ls命令格式:ls [OPTION]... [FIL ...

  8. chromium ①

    Chrome源码剖析 [序] && [一] 1. 它是如何利用多进程(其实也会有多线程一起)做并发的, 进程间通信,进程的开销:2. 做为一个后来者,它的扩展能力如何 3. 它的整体框 ...

  9. python自学第5天,集合,文件读写

    #!/usr/bin/env python #-*- coding:utf-8 -*- # Author:Hunter Yi s={1,1,1,2,3,4,5} print(s) #集合,去重 #关系 ...

  10. wsgi&nginx-理解

    WSGI协议 首先弄清下面几个概念:WSGI:全称是Web Server Gateway Interface,WSGI不是服务器,python模块,框架,API或者任何软件,只是一种规范,描述web ...