M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?

通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数。

因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式。

 #include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=;
const int mmod=;
struct mat{
int r,c;
ll m[][];
void clear(){
for(int i=;i<=r;i++)memset(m[i],,sizeof(m[i]));
}
}; int read(){
int x=;
char c=getchar();
while(c>''||c<'')c=getchar();
while(c>=''&&c<=''){
x=x*+c-'';
c=getchar();
}
return x;
} mat MatMul(mat &m1,mat &m2){
mat tmp;
tmp.r=m1.r;
tmp.c=m2.c;
int i,j,k;
for(i=;i<=tmp.r;i++){
for(j=;j<=tmp.c;j++){
ll t=;
for(k=;k<=m1.c;k++){
t=(t+(m1.m[i][k]*m2.m[k][j])%mmod)%mmod;
}
tmp.m[i][j]=t;
}
}
return tmp;
} mat MatQP(mat &a,int n){
mat ans,tmp=a;
ans.r=ans.c=a.r;
memset(ans.m,,sizeof(ans.m));
for(int i=;i<=ans.r;i++){
ans.m[i][i]=;
}
while(n){
if(n&)ans=MatMul(ans,tmp);
n>>=;
tmp=MatMul(tmp,tmp);
}
return ans;
} ll QP(ll a,ll n){
ll tmp=a,ans=;
while(n){
if(n&)ans=ans*tmp%mod;
tmp=tmp*tmp%mod;
n>>=;
}
return ans%mod;
} int main(){
int x,y,n;
mat t,tmp;
t.r=;t.c=;
t.clear();
t.m[][]=t.m[][]=t.m[][]=;
mat a;
a.r=;
a.c=;
a.m[][]=;
a.m[][]=;
ll ans;
while(scanf("%d%d%d",&x,&y,&n)!=EOF){
if(n==)printf("%d\n",x);
else{
tmp=MatQP(t,n-);
tmp=MatMul(tmp,a);
ans=QP(x,tmp.m[][])*QP(y,tmp.m[][])%mod;
printf("%lld\n",ans);
}
}
return ;
}

hdu4549 M斐波那契数列 矩阵快速幂+快速幂的更多相关文章

  1. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  4. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  5. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  6. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  7. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  8. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  9. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

随机推荐

  1. C++解析六-继承

    面向对象程序设计中最重要的一个概念是继承.继承允许我们依据另一个类来定义一个类,这使得创建和维护一个应用程序变得更容易.这样做,也达到了重用代码功能和提高执行时间的效果.当创建一个类时,您不需要重新编 ...

  2. Java 实现倒计时(由秒计算天、小时、分钟、秒)

    public class Countdown4 { private static long day = 0; private static long hour = 0; private static ...

  3. js数组及常用数学方法

    数组方法 清空数组   1: arr.length=0;   2: arr=[]; arr.push()          //往数组最后一个添加元素,会待会一个返回值,就是新的数组长度arr.uns ...

  4. go中for循环使用多个变量避坑

    go for循环语法为: for expression1, expression2, expression3 { // ... } 使用多个变量时,使用平行赋值,需要留意的是expression3处的 ...

  5. Javascript this 的一些总结

    1.1.1 摘要 相信有C/C++.C#或Java等编程经验的各位,对于this关键字再熟悉不过了.由于Javascript是一种面向对象的编程语言,它和C/C++.C#或Java一样都包含this关 ...

  6. [Codeforces721E]Road to Home

    Problem 有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠. 有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续 ...

  7. Visual Studio Code用户设置文件

    打开 settings.json 文件 修改主题 修改工作区域背景色为豆绿色 { "workbench.colorTheme": "Visual Studio Light ...

  8. android-DNS服务找不到

    1.重启eclipse 2.重新建立AVD 3.在建立AVD时sd卡数值不要填

  9. Creating and Destroying Objects

    Consider static factpry methods instead of construction 四个优点两个缺点 One advantage of static factory met ...

  10. AVD Manager 模拟器使用

    一.模拟器配置 1.双击启动AVD Manager,进入配置界面 2.点Create按钮创建 3.配置模拟器基本信息 --AVD Name:设备名称,自己定义一个,用英文(不要用中文) --Devic ...