hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数。
因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式。
#include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=;
const int mmod=;
struct mat{
int r,c;
ll m[][];
void clear(){
for(int i=;i<=r;i++)memset(m[i],,sizeof(m[i]));
}
}; int read(){
int x=;
char c=getchar();
while(c>''||c<'')c=getchar();
while(c>=''&&c<=''){
x=x*+c-'';
c=getchar();
}
return x;
} mat MatMul(mat &m1,mat &m2){
mat tmp;
tmp.r=m1.r;
tmp.c=m2.c;
int i,j,k;
for(i=;i<=tmp.r;i++){
for(j=;j<=tmp.c;j++){
ll t=;
for(k=;k<=m1.c;k++){
t=(t+(m1.m[i][k]*m2.m[k][j])%mmod)%mmod;
}
tmp.m[i][j]=t;
}
}
return tmp;
} mat MatQP(mat &a,int n){
mat ans,tmp=a;
ans.r=ans.c=a.r;
memset(ans.m,,sizeof(ans.m));
for(int i=;i<=ans.r;i++){
ans.m[i][i]=;
}
while(n){
if(n&)ans=MatMul(ans,tmp);
n>>=;
tmp=MatMul(tmp,tmp);
}
return ans;
} ll QP(ll a,ll n){
ll tmp=a,ans=;
while(n){
if(n&)ans=ans*tmp%mod;
tmp=tmp*tmp%mod;
n>>=;
}
return ans%mod;
} int main(){
int x,y,n;
mat t,tmp;
t.r=;t.c=;
t.clear();
t.m[][]=t.m[][]=t.m[][]=;
mat a;
a.r=;
a.c=;
a.m[][]=;
a.m[][]=;
ll ans;
while(scanf("%d%d%d",&x,&y,&n)!=EOF){
if(n==)printf("%d\n",x);
else{
tmp=MatQP(t,n-);
tmp=MatMul(tmp,a);
ans=QP(x,tmp.m[][])*QP(y,tmp.m[][])%mod;
printf("%lld\n",ans);
}
}
return ;
}
hdu4549 M斐波那契数列 矩阵快速幂+快速幂的更多相关文章
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
随机推荐
- Module loader:模块加载器
<p data-height="265" data-theme-id="0" data-slug-hash="XpqRmq" data ...
- web技术栈中不可或缺的Linux技术
Web技术最重要的载体便是服务器,服务器运行在公共的网络环境下,为广大的用户提供网页浏览.信息通讯.消息推送等服务,从最开始的硬件服务器到虚拟主机技术,再到虚拟化技术的出现和云概念的兴起,绝大部分都是 ...
- WPF 之 TreeView节点重命名
下面的TreeView节点是通过数据双向绑定的方式,绑定到TextBlock控件和TextBox控件的Text属性上,并且让两者绑定相同的属性,同时使TextBox控件刚好完全覆盖TextBlock控 ...
- [Leetcode 135]糖果分配 Candy
[题目] There are N children standing in a line. Each child is assigned a rating value. You are giving ...
- Linux3.10.0块IO子系统流程(4)-- 为请求构造SCSI命令
首先来看scsi_prep_fn int scsi_prep_fn(struct request_queue *q, struct request *req) { struct scsi_device ...
- core net 2 nuget的数据源包
基本都是 在 obj里面 debug里面 porgect.assetc.json
- 打开和写入excel文件
一.使用win32读取excel内容 # -*- coding: utf-8 -*- from win32com import client as wc def open_excel(): excel ...
- js 唤起APP
常常有这样的场景,咱们开发出来的APP需要进行推广,比如在页面顶部来一张大Banner图片,亦或一张二维码.但往往我们都是直接给推广图片加了一个下载链接(App Store中的).所以咱们来模拟一下用 ...
- L327 找灵魂伴侣
Looking for the Perfect Partner I'm sure we all remember a time when we fell in love. For some it wa ...
- mysql 数据库关于my.int 的相关问题
最好在建库的时候直接建好 create database db1 charset utf8; my.int 在mysql的目录里 名曰配置文件 里面主要是内容就是 1 一般用到的就是编码不统一 ...