hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
通过简单地列出若干项 F 即可发现,某一项的值是由若干 a 和 b 相乘得到的,而他们的指数是连续的两项斐波那契数。
因此可以通过斐波那契数列的矩阵快速幂求法得到,注意需要指数的降幂公式。
#include<stdio.h>
#include<string.h>
typedef long long ll;
const int mod=;
const int mmod=;
struct mat{
int r,c;
ll m[][];
void clear(){
for(int i=;i<=r;i++)memset(m[i],,sizeof(m[i]));
}
}; int read(){
int x=;
char c=getchar();
while(c>''||c<'')c=getchar();
while(c>=''&&c<=''){
x=x*+c-'';
c=getchar();
}
return x;
} mat MatMul(mat &m1,mat &m2){
mat tmp;
tmp.r=m1.r;
tmp.c=m2.c;
int i,j,k;
for(i=;i<=tmp.r;i++){
for(j=;j<=tmp.c;j++){
ll t=;
for(k=;k<=m1.c;k++){
t=(t+(m1.m[i][k]*m2.m[k][j])%mmod)%mmod;
}
tmp.m[i][j]=t;
}
}
return tmp;
} mat MatQP(mat &a,int n){
mat ans,tmp=a;
ans.r=ans.c=a.r;
memset(ans.m,,sizeof(ans.m));
for(int i=;i<=ans.r;i++){
ans.m[i][i]=;
}
while(n){
if(n&)ans=MatMul(ans,tmp);
n>>=;
tmp=MatMul(tmp,tmp);
}
return ans;
} ll QP(ll a,ll n){
ll tmp=a,ans=;
while(n){
if(n&)ans=ans*tmp%mod;
tmp=tmp*tmp%mod;
n>>=;
}
return ans%mod;
} int main(){
int x,y,n;
mat t,tmp;
t.r=;t.c=;
t.clear();
t.m[][]=t.m[][]=t.m[][]=;
mat a;
a.r=;
a.c=;
a.m[][]=;
a.m[][]=;
ll ans;
while(scanf("%d%d%d",&x,&y,&n)!=EOF){
if(n==)printf("%d\n",x);
else{
tmp=MatQP(t,n-);
tmp=MatMul(tmp,a);
ans=QP(x,tmp.m[][])*QP(y,tmp.m[][])%mod;
printf("%lld\n",ans);
}
}
return ;
}
hdu4549 M斐波那契数列 矩阵快速幂+快速幂的更多相关文章
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
随机推荐
- C++解析六-继承
面向对象程序设计中最重要的一个概念是继承.继承允许我们依据另一个类来定义一个类,这使得创建和维护一个应用程序变得更容易.这样做,也达到了重用代码功能和提高执行时间的效果.当创建一个类时,您不需要重新编 ...
- Java 实现倒计时(由秒计算天、小时、分钟、秒)
public class Countdown4 { private static long day = 0; private static long hour = 0; private static ...
- js数组及常用数学方法
数组方法 清空数组 1: arr.length=0; 2: arr=[]; arr.push() //往数组最后一个添加元素,会待会一个返回值,就是新的数组长度arr.uns ...
- go中for循环使用多个变量避坑
go for循环语法为: for expression1, expression2, expression3 { // ... } 使用多个变量时,使用平行赋值,需要留意的是expression3处的 ...
- Javascript this 的一些总结
1.1.1 摘要 相信有C/C++.C#或Java等编程经验的各位,对于this关键字再熟悉不过了.由于Javascript是一种面向对象的编程语言,它和C/C++.C#或Java一样都包含this关 ...
- [Codeforces721E]Road to Home
Problem 有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠. 有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续 ...
- Visual Studio Code用户设置文件
打开 settings.json 文件 修改主题 修改工作区域背景色为豆绿色 { "workbench.colorTheme": "Visual Studio Light ...
- android-DNS服务找不到
1.重启eclipse 2.重新建立AVD 3.在建立AVD时sd卡数值不要填
- Creating and Destroying Objects
Consider static factpry methods instead of construction 四个优点两个缺点 One advantage of static factory met ...
- AVD Manager 模拟器使用
一.模拟器配置 1.双击启动AVD Manager,进入配置界面 2.点Create按钮创建 3.配置模拟器基本信息 --AVD Name:设备名称,自己定义一个,用英文(不要用中文) --Devic ...