lame定理求欧几里得算法的求余和赋值次数
根据lame定理,根据欧几里得算法求(a,b)的最大公因数过程如下(假设a>b):

lame定理求欧几里得算法的求余和赋值次数的更多相关文章
- 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))
我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...
- 模板——扩展欧几里得算法(求ax+by=gcd的解)
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...
- 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)
欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...
- 【初等数论】裴蜀定理&扩展欧几里得算法
裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...
- 扩展欧几里得算法(EXGCD)学习笔记
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...
- [算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找 ...
- 欧几里得算法求最大公约数(gcd)
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...
- 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...
- 欧几里得算法求最大公约数-《Algorithms Fourth Edition》第1章
最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公 ...
随机推荐
- pycharm开发工具,使用
在pycharm中,打的断点,仅在调试模式下,即debug 模式下,才有效 Use Alt + Shift + C to quickly review your recent changes to t ...
- 1-3Controller之Response
控制器中的方法: public function response1(){ /*响应的常见类型: * 1.字符串 * 2.视图 * 3.json * 4.重定向 * */ //响应JSON /*$da ...
- linux nginx 安装防火墙ngx_lua_waf
ngx_lua_waf是一款开源的 基于 ngx_lua的 web应用防火墙 github地址是 https://github.com/loveshell/ngx_lua_waf 安装流程如下 1 ...
- daay04流程控制之for循环
for循环主要用于循环取值 student=['egon','虎老师','lxxdsb','alexdsb','wupeiqisb'] # i=0 # while i < len(student ...
- NTT模板(无讲解)
#include<bits/stdc++.h>//只是在虚数部分改了一下 using namespace std; typedef long long int ll; ; ; ; ; ll ...
- java 实现简单的链式栈
package com.my; /** * 链式栈 * @author wanjn * */ public class LinkedStack { private Node head; private ...
- Alpha 冲刺 (6/10
Alpha 冲刺 (6/10) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.组织会议 2.帮助队员解决 ...
- Dll重定向(尚存否?)
windows核心编程(第五版)的20.6节介绍了Dll重定向. 0x01 Dll重定向简介 产生Dll重定向原因: 应用程序 a.exe 依赖动态链接库 compoent.dll 1.0 版本.但 ...
- L298 猴子进化过程
The evolution of monkeys remains a mystery Why monkeys and apes took separate evolutionary paths has ...
- Chrome插件-网页版BusHound
Chrome插件-网页版BusHound