[HNOI2009]最小圈 (二分答案+负环)
题面:[HNOI2009]最小圈
题目描述:
考虑带权的有向图 $ G=(V,E) $ 以及 $ w:E\rightarrow R $ ,每条边 $ e=(i,j)(i\neq j,i\in V,j\in V) $ 的权值定义为 $ w_{i,j} $ ,令 $ n=|V| $ 。 $ c=(c_1,c_2,\cdots,c_k)(c_i\in V) $ 是 $ G $ 中的一个圈当且仅当 $ (c_i,c_{i+1})(1\le i\lt k) $ 和 $ (c_k,c_1) $ 都在 $ E $ 中,这时称 $ k $ 为圈 $ c $ 的长度同时令 $ c_{k+1}=c_1 $ ,并定义圈 $ c=(c_1,c_2,\cdots,c_k) $ 的平均值为 $ \mu(c)=\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}/k $ ,即 $ c $ 上所有边的权值的平均值。令 $ \mu'(c)=Min(\mu(c)) $ 为 $ G $ 中所有圈 $ c $ 的平均值的最小值。现在的目标是:在给定了一个图 $ G=(V,E) $ 以及 $ w:E\rightarrow R $ 之后,请求出 $ G $ 中所有圈 $ c $ 的平均值的最小值 $ \mu'(c)=Min(\mu(c)) $
输入格式:
第一行2个正整数,分别为 $ n $ 和 $ m $ ,并用一个空格隔开,只用 $ n=|V|,m=|E| $ 分别表示图中有 $ n $ 个点 $ m $ 条边。
接下来m行,每行3个数 $ i,j,w_{i,j} $ ,表示有一条边 $ (i,j) $ 且该边的权值为 $ w_{i,j} $ 。输入数据保证图 $ G=(V,E) $ 连通,存在圈且有一个点能到达其他所有点。
输出格式:
请输出一个实数 $ \mu'(c)=Min(\mu(c)) $ ,要求输出到小数点后8位。
输入样例#1:
4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
输出样例#1:
3.66666667
输入样例#2:
2 2
1 2 -2.9
2 1 -3.1
输出样例#2:
-3.00000000
说明:
对于100%的数据, $ n\le 3000,m\le 10000,|w_{i,j}| \le 10^7 $
$ solution: $
这道题要我们求平均值的最小值,所以我们考虑二分答案的可能性,先列出答案的意义:
$ ans=\frac{\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}}{K}\quad _{(c_{k+1}=c_1)} $
我们将它转换一下:
$ ans\times k={\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}}\quad _{(c_{k+1}=c_1)} $
$ 0=\sum\limits_{i=1}^{k} (w_{c_i,c_{i+1}})-ans\times k\quad _{(c_{k+1}=c_1)} $
$ 0=\sum\limits_{i=1}^{k}(w_{c_i,c_{i+1}}-ans)\quad _{(c_{k+1}=c_1)} $
这样我们发现它已经化成了一个二分答案的常用等式(等式右边可以 $ O(n) $ 求出来,且具备单调性)而我们注意到等式左边为0,所以我们可以二分ans,并将边权改为 $ w_{c_i,c_{i+1}}-mid $ ,然后求负环即可。
为什么可以这样做呢?这个较地震那一题好讲一些,我们当前二分出来的平均值mid,我们将每一条边的边权都减去它,如果存在负环,说明这个环上所有边权实际边权值加起来的平均值一定小于mid!(这里需要仔细想一下)
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
const db cha=1e-9;
struct su{
db v;int to,next;
}a[10005];
bool f;
int n,m,top;
int tou[3005];
bool vis[3005];
db mid,dis[3005];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
inline void add(int x,int y){
scanf("%lf",&a[++top].v);
a[top].to=y;
a[top].next=tou[x];
tou[x]=top;
}
inline void spfa(int i){
vis[i]=1;
for(rg j=tou[i];j;j=a[j].next){
if(dis[a[j].to]>dis[i]+a[j].v-mid){
dis[a[j].to]=dis[i]+a[j].v-mid;
if(vis[a[j].to])return void(f=1);
else spfa(a[j].to);
}
}vis[i]=0;
}
inline bool check(){
for(rg i=1;i<=n;++i)
dis[i]=vis[i]=0;;f=0;
for(rg i=1;i<=n&&!f;++i)
if(!vis[i])spfa(i);
return f;
}
int main(){
freopen("cycle.in","r",stdin);
freopen("cycle.out","w",stdout);
n=qr(),m=qr();
for(rg i=1;i<=m;++i)
add(qr(),qr());
db l=-1e7,r=1e7;
while(l<=r){
mid=(l+r)/2;
if(check())r=mid-cha;
else l=mid+cha;
}printf("%.8lf\n",l);
return 0;
}
[HNOI2009]最小圈 (二分答案+负环)的更多相关文章
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
- bzoj 1486: [HNOI2009]最小圈 dfs求负环
1486: [HNOI2009]最小圈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1022 Solved: 487[Submit][Status] ...
- 递归型SPFA+二分答案 || 负环 || BZOJ 4773
题解: 基本思路是二分答案,每次用Dfs型SPFA验证该答案是否合法. 一点细节我注释在代码里了. 代码: #include<cstdio> #include<cstring> ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- BZOJ_1486_[HNOI2009]最小圈_01分数规划
BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...
随机推荐
- windows 下编程实现打印日志
下面是在windows下编程实现的日志打印,写的比较简单,可以根据实际情况进行修改使用. 宏WRITELOG在vs2013可以正常使用. 在vs2003和vs2010可能会报错,可以直接使用myLog ...
- Sabotage UVA - 10480 (输出割边)
题意:....emm...就是一个最小割最大流,.,...用dinic跑一遍.. 然后让你输出割边,就是 u为能从起点到达的点, v为不能从起点到达的点 最后在残余路径中用dfs跑一遍 能到达的路 ...
- day6 三级菜单
#__author__: Administrator #__date__: 2018/7/12 china = { "shandong":{ "linyi":[ ...
- 创建首个 Android 项目
Android 项目包括构成你的 Android 应用的源代码的所有文件. 利用 Android SDK 工具可以简单的创建 默认项目目录和文件来开始一个新的 Android 项目. 本节课展示了如何 ...
- 洛谷 P3253 [JLOI2013]删除物品 解题报告
P3253 [JLOI2013]删除物品 题目描述 箱子再分配问题需要解决如下问题: (1)一共有\(N\)个物品,堆成\(M\)堆. (2)所有物品都是一样的,但是它们有不同的优先级. (3)你只能 ...
- 【原创】python多线程测试接口性能
除了使用性能测试工具进行性能测试,我们也可以直接用python多线程进行性能测试. 下面,使用这几个模块,对一个查询接口做性能测试: requests:发送http请求 json:返回的字符串转换成j ...
- cf757F Team Rocket Rises Again (dijkstra+支配树)
我也想要皮卡丘 跑一遍dijkstra,可以建出一个最短路DAG(从S到任意点的路径都是最短路),然后可以在上面建支配树 并不会支配树,只能简单口胡一下在DAG上的做法 建出来的支配树中,某点的祖先集 ...
- 收藏:解决其它程序与IIS共享80端口的四个方法
今天写的程序也占用80端口,而 IIS也占用 80端口,我在我的一张网卡上分配了两个IP地址,但是测试发现:只要IIS启动后,我写的程序就无法使用80端口,到网上搜索了一下,终于找到了解决办法: 使用 ...
- java基础题整理(1)
1.使用length属性获取数组长度,使用length()获取字符串的长度: 2.public.private.protected.friendly区别 public表明该数据成员.成员函数是对所有用 ...
- 内存分布图,errno
输出错误,errno是默认的全局变量 错误处理函数: 错误号:errno perror函数: void perror(const char *s); strerror函数: ...