poj 3101Astronomy(圆周追击+分数最小公倍数)
/*
本题属于圆周追击问题:
假设已知两个圆周运动的物体的周期分别是a ,b, 设每隔时间t就会在同一条直线上
在同一条直线上的条件是 角度之差为 PI !
那么就有方程 (2PI/a - 2PI/b)* t=PI 所以就有 t=ab/(2|a-b|);
如果有多个物体, 就会有多个t值,所以每隔 所有 t值的最小公倍数的时间所有的物体就会在同一直线上! 另外:如果分数的分子分别是 a1, a2, ...., 和 b1, b2, ....
那么所有分数的最小公倍数就是lcm(a1, a2, ...)/gcd(b1, b2,....); 再有:如何求多个数的最小公倍数呢?
根据数论,每一个数都可以表示成素数的乘积的形式!
令p[i]存储素数,将a1,a2,...分别整除以p[i],直到除尽!并记录除以每个p[i]时的个数temp;
并更新该个数的最大值cnt[i]=max(temp, cnt[i]); 最后cnt[i]个p[i]分别相乘得到最终的结果就是所有数的最小公倍数!
*/
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#define M 10005
#define N 1005
using namespace std;
typedef long long LL;
LL p[M];
bool isP[M];
LL cnt[M];
LL q[N];
LL ans[N], endx;
LL top; void bigN(){//大数据的处理
LL c=;
endx=;
ans[]=;
for(LL i=; i<top; ++i)
for(LL j=; j<cnt[i]; ++j){
for(LL k=; k<=endx; ++k){
ans[k]=ans[k]*p[i] + c;
c=ans[k]/;
ans[k]%=;
}
if(c>){
ans[++endx]=c;
c=;
}
}
} void isPrime(){
LL i, j;
isP[]=;
for(i=; i<M; ++i){
if(!isP[i]) p[top++]=i;
for(j=; j<top && i*p[j]<M; ++j){
isP[i*p[j]]=;
if(i%p[j]==) break;
}
}
} void solve(LL k){
for(LL i=; i<top && p[i]<=k; ++i){
LL tmp=;
while(k%p[i]==){
++tmp;
k/=p[i];
} if(tmp>cnt[i])
cnt[i]=tmp;
}
} LL gcd(LL a, LL b){
while(b){
LL r=a%b;
a=b;
b=r;
}
return a;
} int main(){
LL n;
isPrime();
while(scanf("%lld", &n)!=EOF){
memset(cnt, , sizeof(cnt));
scanf("%lld", &q[]);
for(LL i=; i<n; ++i){
scanf("%lld", &q[i]);
LL tmp=q[]-q[i]> ? q[]-q[i] : q[i]-q[];
if(tmp!=){
LL GCD=gcd(tmp, q[]*q[i]);
solve(q[]*q[i]/GCD);
q[i]=tmp/GCD;
}
else q[i]=;
} LL ans2=;
for(LL i=; i<n; ++i)
ans2=gcd(ans2, q[i]);
if(cnt[]>)//除以2
--cnt[];
else ans2*=; bigN();
if(ans2==){
endx=;
ans[endx]=;
}
printf("%lld", ans[endx]);
for(int i=endx-; i>=; --i)
printf("%04lld", ans[i]);
printf(" %lld\n", ans2);
}
return ;
}
//用java爽一下,处理大数
import java.util.Scanner;
import java.util.Arrays;
import java.math.*;
import java.io.BufferedInputStream;
class Main{
static int[] tt = new int[1005];
static int n;
static int top=0;
static boolean[] flag = new boolean[10005];
static int[] p = new int[10005];
static int[] q = new int[10005];
static int[] aa = new int[10005];
public static void isprime(){
int i, j;
Arrays.fill(flag, false);
for(i=2; i<=10000; ++i){
if(!flag[i]) p[top++]=i;
for(j=0; j<top && i*p[j]<=10000; ++j){
flag[i*p[j]]=true;
if(i%p[j]==0) break;
}
}
--top;
flag[1]=true;
}
public static void solve(int k){
int i, cnt;
for(i=0; i<=top && p[i]<=k; ++i){
cnt=0;
while(k%p[i]==0){
++cnt;
k=k/p[i];
}
if(cnt>aa[i])
aa[i]=cnt;
}
} public static int gcd(int a, int b){
while(b!=0){
int r=a%b;
a=b;
b=r;
}
return a;
} public static void main(String[] args){
isprime();
Scanner input = new Scanner(new BufferedInputStream(System.in));
n=input.nextInt();
q[0]=input.nextInt();
for(int i=1; i<n; ++i){
q[i]=input.nextInt();
int temp=Math.abs(q[0]-q[i]);
if(temp!=0){
int GCD=gcd(temp, q[0]*q[i]);
solve(q[0]*q[i]/GCD);
q[i]=temp/GCD;
}
else q[i]=0;
} BigInteger bigN = BigInteger.ONE;
for(int i=0; i<=top; ++i){
for(int j=0; j<aa[i]; ++j)
bigN=bigN.multiply(BigInteger.valueOf(p[i]));
}
for(int i=0; i<=top; ++i)
if(aa[i]!=0)
System.out.println(p[i]+" "+aa[i]);
int ans=0;
for(int i=1; i<n; ++i){
ans=gcd(ans, q[i]);
}
if(aa[0]>0)
bigN=bigN.divide(BigInteger.valueOf(2));
else ans*=2;
if(ans==0)
bigN=BigInteger.ZERO;
System.out.println(bigN+" "+ans);
}
}
poj 3101Astronomy(圆周追击+分数最小公倍数)的更多相关文章
- poj 3101 Astronomy (java 分数的最小公倍数 gcd)
题目链接 要用大数,看了别人的博客,用java写的. 题意:求n个运动周期不完全相同的天体在一条直线上的周期. 分析:两个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个 ...
- poj 3266 Cow School 分数规划
这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的. 那么问题就转化成了 ...
- POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim
http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...
- poj 3621 0/1分数规划求最优比率生成环
思路:以val[u]-ans*edge[i].len最为边权,判断是否有正环存在,若有,那么就是ans小了.否则就是大了. 在spfa判环时,先将所有点进队列. #include<iostrea ...
- poj Dropping tests 01分数规划---Dinkelbach算法
果然比二分要快将近一倍.63MS.二分94MS. #include <iostream> #include <algorithm> #include <cstdio> ...
- POJ 2976(01分数划分+二分)
Droppi ...
- hdu 1713 相遇周期
求分数的最小公倍数.对于a/b c/d 先化简为最简分数,分数最小公倍数=分子的最小公倍数/分母的最大公约数. ;}
- poj 3101 Astronomy(分数的最小公倍数)
http://poj.org/problem? id=3101 大致题意:求n个运动周期不全然同样的天体在一条直线上的周期. 这题我是看解题报告写的,没想到选用參照物,用到了物理中的角速度什么的. 由 ...
- poj 3979 分数加减法
分数加减法 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13666 Accepted: 4594 Descriptio ...
随机推荐
- uva 11174 Stand in a Line
// uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...
- FreeMarker如何输出特殊含义字符
$.#.{.}这几个字符在FreeMarker中有着特殊的含义,当需要在FreeMarker中输出这几个字符时,可采取如下办法: ${r"#{foo}"}.${r"#{& ...
- uva-10305
题意:给出n个任务,任务不是完全独立的,有些任务必须依赖另外一些任务才能执行:m个任务关系. 输出:n个任务的可能执行顺序: 我的解决方法:这就是个赤裸裸的拓扑排序,直接dfs拓扑每一个任务点,然 ...
- SQL SERVER 2000数据库置疑处理
由于服务器意外的断电,导致SQL SERVER服务器上数据库出现“置疑”而无法使用,通过网上搜索,找到以下方法解决问题,这里记录一下: 产生数据库置疑的时侯,数据库文件和日志文件都是存在的,如果数据库 ...
- maven创建 web项目
Maven教程初级篇03: 创建Web应用 1. 使用如下命令创建Web应用: 代码 mvn archetype:generate -DgroupId=net.jianxi.tutorials.mav ...
- 安装CAS服务器
1.简介 参考: http://www.coin163.com/java/cas/cas.html CAS主要用于多系统单点登录,属于WEB SSO.SSO体系主要角色有三种:User(多个),WEB ...
- seajs模块化作用理解(一句话)
seajs是js模块化的工具,主要大文件js不方便其他人理解,加载也较慢,seajs把各个功能模块分开,方便平行化开发,同时易于修改和理解,不用重复写功能需要时就应用 (有什么错误,请指正,缺少多谢补 ...
- Database Schemas Found in Oracle E-Business Suite
https://docs.oracle.com/cd/E26401_01/doc.122/e22952/T156458T659606.htm Table of Database Schemas in ...
- 从为什么String=String谈到StringBuilder和StringBuffer
前言 有这么一段代码: public class TestMain { public static void main(String[] args) { String str0 = "123 ...
- 接口分离原则(Interface Segregation Principle)
接口分离原则(Interface Segregation Principle)用于处理胖接口(fat interface)所带来的问题.如果类的接口定义暴露了过多的行为,则说明这个类的接口定义内聚程度 ...