题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率。

析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 k 个题的概率,sum[i][j] 表示第 i 个队伍,做出 1-j 个题的概率,ans1等于,

T个队伍,至少解出一个题的概率,ans2 表示T个队伍,至少解出一个题,但不超过N-1个题的概率,最后用ans1-ans2即可。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m; }
double dp[2][35][35];
double a[1005][35];
double sum[1005][35]; int main(){
int t;
while(scanf("%d %d %d", &n, &m, &t) == 3 && m+n+t){
for(int i = 1; i <= m; ++i)
for(int j = 1; j <= n; ++j)
scanf("%lf", &a[i][j]);
memset(dp, 0, sizeof dp);
dp[1][0][0] = dp[0][0][0] = 1.0;
int cnt = 0;
for(int i = 1; i <= m; ++i, cnt ^= 1){
for(int j = 1; j <= n; ++j)
for(int k = 0; k <= j; ++k)
dp[cnt][j][k] = dp[cnt][j-1][k] * (1.0 - a[i][j]) + dp[cnt][j-1][k-1] * a[i][j];
sum[i][0] = 0.0;
for(int k = 1; k <= n; ++k)
sum[i][k] = sum[i][k-1] + dp[cnt][n][k];
} double ans1 = 1.0, ans2 = 1.0;
for(int i = 1; i <= m; ++i) ans1 *= sum[i][n];
for(int i = 1; i <= m; ++i) ans2 *= sum[i][t-1];
printf("%.3f\n", ans1-ans2);
}
return 0;
}

POJ 2151 Check the difficulty of problems (概率DP)的更多相关文章

  1. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  2. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  3. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  4. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

  5. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  6. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  7. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  8. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

  9. POJ2157 Check the difficulty of problems 概率DP

    http://poj.org/problem?id=2151   题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...

随机推荐

  1. java.util.regex.PatternSyntaxException: Dangling meta character '*' near index 0

    使用repalceAll 方法出现java.util.regex.PatternSyntaxException: Dangling meta character '*' near index 0异常 ...

  2. XML数据 JSON数据 LitJSON 数据 的编写和解析 小结

    用XML生成如下数据<?xml version="1.0"encoding="UTF-8"?><Transform name="My ...

  3. 史航416第九次作业&总结

    一.知识点总结: 1.二维数组定义的形式:类型名 数组名[行长度] [列长度] 例如:int a[3][2]:定义一个二维数组a,3行2列,6个元素: 2.二维数组引用的形式:类型名 数组名[行下标] ...

  4. ubuntu 下搭建nginx

    1.安装nginx sudo apt-get install nginx 2.nginx 的启动和关闭启动 nginx:# nginx -c /etc/nginx/nginx.conf 3.关闭 ng ...

  5. privoxy代理google浏览器访问缓慢

    取消--no-daemon <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PU ...

  6. auth用户认证库

    关于auth库,建议如下:1. ion_auth,基于Redux重写而成,非常不错的认证库,国外用的很多,几个最新的ci2.0.2基础上的开源系统(如doveforum)都用它,支持ci 2.0和以上 ...

  7. POJ 1015 Jury Compromise 2个月后重做,其实这是背包题目

    http://poj.org/problem?id=1015 题目大意:在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候选人,然后再从 ...

  8. angular+ionic返回上一页并刷新

    假定当前页面为editCata页面,要返回的是cataDetail页面.目前我找到两种方法实现返回上一页并刷新,如果以后有其它方法,再继续添加. 1.在editCataCtrl.js中注入$ionic ...

  9. POJ 1151 Atlantis(线段树-扫描线,矩形面积并)

    题目链接:http://poj.org/problem?id=1151 题目大意:坐标轴上给你n个矩形, 问这n个矩形覆盖的面积 题目思路:矩形面积并. 代码如下: #include<stdio ...

  10. Time Series data 与 sequential data 的区别

    It is important to note the distinction between time series and sequential data. In both cases, the ...