Hdu 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7620 Accepted Submission(s): 3692
Problem Description
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.
As an example, the
maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4
1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1
8
and has a sum of 15.
Input
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
Output
Sample Input
8 0 -2
Sample Output
#include <iostream>
#include <cstdio>
using namespace std;
#define N 105
int arr[N][N],b[N];
int dp(int *a,int m) //求一维数组的最大子段和
{
int i,sum,max;
sum = 0;
max = 0;
for(i=0; i<N; i++)
{
sum += a[i];
if(sum<0)
sum = 0;
if(sum>max)
max = sum;
}
return max;
}
int main()
{
int i,j,k,n,sum,max;
while(scanf("%d",&n)!=EOF)
{
for(i=0; i<n; i++)
for(j=0; j<n; j++)
scanf("%d",&arr[i][j]);
max = 0;
for(i=0; i<n; i++)
{
memset(b,0,sizeof(b));
for(j=i; j<n; j++)
{
for(k=0; k<n; k++)
b[k] += arr[j][k];
sum = dp(b,n);
if(sum>max)
max = sum;
}
}
printf("%d\n",max);
}
return 0;
}
Hdu 1081 To The Max的更多相关文章
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- ACM HDU 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...
- HDU 1081 To The Max (dp)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- React Native开发之npm start加速
在Windows下好不容易安装好React Native环境之后,运行npm start,结果就是无限被等待,快的话160秒(将近3分钟啊....) 而Mac下因为有watchman所以是飞一样的速度 ...
- python函数
一.函数: 创建函数:使用def语句 举例:定义一个返回斐波那楔数列列表的函数 def fibs(num): result = [0,1] for i in range(num-2): result. ...
- sql server 权限体系
--给sql server添加一个新用户[账号,密码,数据库名] execute sp_addlogin 'baishi', '123','db'; execute sp_addlogin 'wx ...
- html5新增标签和属性
结构性标签:<header>头部</header><nav>导航</nav><section>用于表达书的一章或一部分</sectio ...
- java接口的嵌套
java接口 1.接口中定义的变量默认是public static final 型,且必须给其初值,所以实现类中不能重新定义,也不能改变其值 2.接口中的方法默认都是 public abstract ...
- odoo 人力资源工资计算拓展
默认情况下 odoo工资条的计算只支持一下几种python变量: # payslip: object containing the payslips# employee: hr.employee ob ...
- 那些年一起用过的iOS开发利器之Parse
阅读此文章需要对Objective-C和iOS有一定的了解,完全没有基础的朋友请先阅读<让不懂编程的人爱上iPhone开发>系列教程. 什么是后台服务(back-end service)? ...
- mysql求最大第二,最大第三个数
题目是这样的: 集团有多个部门,部门下有多个员工,求每个部门绩效排名第二的人员 sql语句是这样的 SELECT dep, MAX(score) FROM zx WHERE score NOT IN ...
- Java学习路线
总体思路:由表及里,勤于实践,纵横交错,融会贯通 Java语言----->JDK----->Java虚拟机原理----->编译原理----->操作系统原理----->计算 ...
- [uva12170]Easy Climb
还是挺难的一个题,看了书上的解析以后还是不会写,后来翻了代码仓库,发现lrj又用了一些玄学的优化技巧. #include <algorithm> #include <iostream ...