求 \(\sum_{i=1}^n \sum_{j=1}^n 2^{a_ia_j}\)

Solution

化简一下
\[
2^{a_ia_j} = p^{(a_i+a_j)^2-a_i^2-a_j^2}, \ p^2= 2(\bmod 998244353)
\]
这个 \(p\) 我们可以预先暴力找到它 \(=116195171\),计算答案
\[
\begin{align}
&\sum_i \sum_j p^{(a_i+a_j)^2-a_i^2-a_j^2}
\\
=& \sum_kp^{k^2} \sum_{a_i+a_j=k}p^{-a_i^2}p^{-a_j^2}
\end{align}
\]
设 \(f(x)=\sum_i p^{-a_i^2}x^{a_i}\),则答案即为
\[
\sum_k p^{k^2}[x^k]f^2(x)
\]
用 NTT 计算即可

Wannafly Winter Camp 2020 Day 6A Convolution - NTT的更多相关文章

  1. Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学

    神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...

  2. Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学

    于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...

  3. Wannafly Winter Camp 2020 Day 7A 序列 - 树状数组

    给定一个全排列,对于它的每一个子序列 \(s[1..p]\),对于每一个 \(i \in [1,p-1]\),给 \(s[i],s[i+1]\) 间的每一个值对应的桶 \(+1\),求最终每个桶的值. ...

  4. Wannafly Winter Camp 2020 Day 6J K重排列 - dp

    求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...

  5. Wannafly Winter Camp 2020 Day 6I 变大! - dp

    给定一个序列,可以执行 \(k\) 次操作,每次选择连续的三个位置,将他们都变成他们的最大值,最大化 \(\sum a_i\) 需要对每一个 \(k=i\) 输出答案 \(n \leq 50, a_i ...

  6. Wannafly Winter Camp 2020 Day 6H 异或询问 - 二分

    给定一个长 \(n\) 的序列 \(a_1,\dots,a_n\),定义 \(f(x)\) 为有多少个 \(a_i \leq x\) 有 \(q\) 次询问,每次给定 \(l,r,x\),求 \(\s ...

  7. Wannafly Winter Camp 2020 Day 6G 单调栈 - 贪心

    对于排列 \(p\),它的单调栈 \(f\) 定义为,\(f_i\) 是以 \(p_i\) 结尾的最长上升子序列的长度 先给定 \(f\) 中一些位置的值,求字典序最小的 \(p\) 使得它满足这些值 ...

  8. Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学

    给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...

  9. Wannafly Winter Camp 2020 Day 6C 酒馆战棋 - 贪心

    你方有 \(n\) 个人,攻击力和血量都是 \(1\).对方有 \(a\) 个普通人, \(b\) 个只有盾的,\(c\) 个只有嘲讽的,\(d\) 个有盾又有嘲讽的,他们的攻击力和血量都是无穷大.有 ...

随机推荐

  1. Mutual Information

    Mutal Information, MI, 中文名称:互信息. 用于描述两个概率分布的相似/相关程度. 常用于衡量两个不同聚类算法在同一个数据集的聚类结果的相似性/共享的信息量. 给定两种聚类结果\ ...

  2. postman之下载文件

    前言 小伙伴们在实际的测试工作中是否遇到过下载的接口呢,例如网盘的项目就涉及到上传和下载的接口了,那么我们如何利用postman对下载接口进行测试呢?下面我们一起来学习吧! 练习案例:下载接口:htt ...

  3. Matplotlib数据可视化(1):入门介绍

      1 matplot入门指南¶ matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来 ...

  4. php基础编程-php连接mysql数据库-mysqli的简单使用

    很多php小白在学习完php基础后,或多或少要接触到数据库的使用.而mysql数据库是你最好的选择,本文就mysql来为大家介绍php如何连接到数据库. PHP MySQLi = PHP MySQL ...

  5. Linux相关知识笔记

    Quagga要在linux下编译并配置运行,所有,学习一点linux的基础知识. 安装的Ubuntu,用户名linux,密码1 使能Ubuntu的IP转发功能,需要修改etc/sysctl.conf和 ...

  6. Pycrypto与RSA密码技术

    密码与通信      密码技术是一门历史悠久的技术.信息传播离不开加密与解密.密码技术的用途主要源于两个方面,加密/解密和签名/验签.   pip install pycrypto RSA 密码算法与 ...

  7. 51nod 1002 数塔取值问题 dp

    动态规划 1002 数塔取数问题 1.0 秒 131,072.0 KB 5 分 1级题   一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值. 每次只能走到下一层相邻的数上,例如 ...

  8. 创建PyCharm工程

  9. 配置nginx代理服务器访问tomcat服务

    nginx原配置文件如下: #user nobody; worker_processes ; #error_log logs/error.log; #error_log logs/error.log ...

  10. 10个用于C#.NET开发的基本调试工具

    在调试软件时,工具非常重要.获取正确的工具,然后再调试时提起正确的信息.根据获取的正确的错误信息,可以找到问题的根源所在.找到问题根源所在,你就能够解决该错误了. 你将看到我认为最基本的解决在C# . ...