Impedance

(1) Z0

Z0 is the impedance of one T-line while other lines are held at 0.

Single end.

(2) Zdiff

Zdiff is the impedance bw T1 and T2.

when lines are uncoupled,

Zdiff = 2* Z0;

(3) Zcomm

Zcomm is defined as the current that flows in the pair due to Vcomm.

Vcomm on T1 and T2 are the same, so it can be seen as T1 and T2 are connected together.

so when there’s no couple,

Zcomm = 1/2* Z0;

(4) Zodd

Zodd is the impedance of a single trace, when the pair is driven with an ODD Mode.

If there’s no coupling,   Zdiff = 2* Z0;

if there’s coupling, Zdiff = 2* Zodd.

(5) Zeven

Zeven is the impedance of a single trace, when the pair is driven with an EVEN Mode.

If there’s no coupling,   Zcomm = 1/2 * Z0;

if there’s coupling, Zcomm = 1/2 * Zeven.

(6 ) commom equations to calculate Z0, Zodd and Zeven:

Termination

We want to create a termination network that:

1) Vdiff observes Zdiff = 2·ZODD, that is Zdiff is constant;
2) Vcomm observes Zcomm = (1/2)·Zeven, that is Zcomm is constant.

For a single ODD or EVEN case, it can be accomplished by:

1) for ODD mode

2) for EVEN mode

But obviouly none of above can cover both cases.

To cover both cases, we can use Pie network or T network.

(1) Pie network

. for EVEN mode, voltages on both ends of R1 are Vcomm, so R1 can be seen as open, hence

R2 = Zeven

. for ODD mode, we hope:

R1//(2*R2) = 2* Zodd.

It can be transferred as:

In summary, for Pie termination network,

(2) T network

. for ODD mode, there’s a virtual ground at the connecting point of R1 and R2, so R2 can be seen as obsolete, hence

R1 = Zodd.

. for EVEN mode, we hope:

1/2* R1 + R2 = 1/2 * Zeven,

it can be transferred as:

In summary, for T termination network:

differential related impedance and termination的更多相关文章

  1. USB 3.0规范中译本 第5章 机械结构

    本文为CoryXie原创译文,转载及有任何问题请联系cory.xie#gmail.com. 本章定义USB 3.0连接器和线缆组件的form, fit 和 function.包括以下方面: • 连接器 ...

  2. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  3. Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记

    -------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...

  4. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  5. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. 32、Differential Gene Expression using RNA-Seq (Workflow)

    转载: https://github.com/twbattaglia/RNAseq-workflow Introduction RNAseq is becoming the one of the mo ...

  7. Method of offloading iSCSI TCP/IP processing from a host processing unit, and related iSCSI TCP/IP offload engine

    A method of offloading, from a host data processing unit (205), iSCSI TCP/IP processing of data stre ...

  8. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  9. kubernetes concepts -- Termination Of Pod

    Pods are the smallest deployable units of computing that can be created and managed in Kubernetes. W ...

随机推荐

  1. Python实现二叉堆

    Python实现二叉堆 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树).二叉堆有两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆: ...

  2. 6、 restful API

    RESTful 一种软件架构风格.设计风格,而不是标准,只是提供了一组设计原则和约束条件.它主要用于客户端和服务器交互类的软件.基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制. RE ...

  3. 【HDUOJ】1213 How many tables

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1213 题意:Ignatius邀请了n个朋友来家里,朋友之间如果互相不认识的不想坐一起,所以至少要准备几 ...

  4. Xcode常见路径

    模拟器安装的位置: /Library/Developer/CoreSimulator/Profiles/Runtimes 可以通过Xcode安装  模拟器程序的沙盒 Xcode编译生成的Product ...

  5. Task 暂停与继续

    static void Main(string[] args) { CancellationTokenSource tokenSource = new CancellationTokenSource( ...

  6. gmock 简单笔记

    std::shared_ptr<MockThreadRCInvester> spMockaAcc; HelperThreadRCInvester helperAcc; // spMockA ...

  7. 前端常用的库和实用技术之JavaScript高级技巧

    javascript高级技巧 变量作用域和闭包 <!DOCTYPE html> <html lang="en"> <head> <meta ...

  8. sql (9) COUNT

    COUNT() 函数返回匹配指定条件的行数.语法SQL COUNT(column_name) 语法COUNT(column_name) 函数返回指定列的值的数目(NULL 不计入):新建表 Stude ...

  9. npm与cnpm两者之间的区别是什么?

    NPM(节点包管理器)是节点的包管理器,用于管理节点插件(包括安装.卸载和管理依赖关系等).).NPM是一个软件包管理工具,安装在新版本的节点上,所以我们需要安装节点. NPM的常用场景(http:/ ...

  10. android gradle 和gradle plugin

    android gradle 和gradle plugin 1.安装完AS3.5.2创建完项目一运行,报了如下错误 Error:Could not find com.android.tools.bui ...