Impedance

(1) Z0

Z0 is the impedance of one T-line while other lines are held at 0.

Single end.

(2) Zdiff

Zdiff is the impedance bw T1 and T2.

when lines are uncoupled,

Zdiff = 2* Z0;

(3) Zcomm

Zcomm is defined as the current that flows in the pair due to Vcomm.

Vcomm on T1 and T2 are the same, so it can be seen as T1 and T2 are connected together.

so when there’s no couple,

Zcomm = 1/2* Z0;

(4) Zodd

Zodd is the impedance of a single trace, when the pair is driven with an ODD Mode.

If there’s no coupling,   Zdiff = 2* Z0;

if there’s coupling, Zdiff = 2* Zodd.

(5) Zeven

Zeven is the impedance of a single trace, when the pair is driven with an EVEN Mode.

If there’s no coupling,   Zcomm = 1/2 * Z0;

if there’s coupling, Zcomm = 1/2 * Zeven.

(6 ) commom equations to calculate Z0, Zodd and Zeven:

Termination

We want to create a termination network that:

1) Vdiff observes Zdiff = 2·ZODD, that is Zdiff is constant;
2) Vcomm observes Zcomm = (1/2)·Zeven, that is Zcomm is constant.

For a single ODD or EVEN case, it can be accomplished by:

1) for ODD mode

2) for EVEN mode

But obviouly none of above can cover both cases.

To cover both cases, we can use Pie network or T network.

(1) Pie network

. for EVEN mode, voltages on both ends of R1 are Vcomm, so R1 can be seen as open, hence

R2 = Zeven

. for ODD mode, we hope:

R1//(2*R2) = 2* Zodd.

It can be transferred as:

In summary, for Pie termination network,

(2) T network

. for ODD mode, there’s a virtual ground at the connecting point of R1 and R2, so R2 can be seen as obsolete, hence

R1 = Zodd.

. for EVEN mode, we hope:

1/2* R1 + R2 = 1/2 * Zeven,

it can be transferred as:

In summary, for T termination network:

differential related impedance and termination的更多相关文章

  1. USB 3.0规范中译本 第5章 机械结构

    本文为CoryXie原创译文,转载及有任何问题请联系cory.xie#gmail.com. 本章定义USB 3.0连接器和线缆组件的form, fit 和 function.包括以下方面: • 连接器 ...

  2. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  3. Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记

    -------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...

  4. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  5. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. 32、Differential Gene Expression using RNA-Seq (Workflow)

    转载: https://github.com/twbattaglia/RNAseq-workflow Introduction RNAseq is becoming the one of the mo ...

  7. Method of offloading iSCSI TCP/IP processing from a host processing unit, and related iSCSI TCP/IP offload engine

    A method of offloading, from a host data processing unit (205), iSCSI TCP/IP processing of data stre ...

  8. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  9. kubernetes concepts -- Termination Of Pod

    Pods are the smallest deployable units of computing that can be created and managed in Kubernetes. W ...

随机推荐

  1. Devstack单节点环境实战配置

    本文为minxihou的翻译文章,转载请注明出处Bob Hou: http://blog.csdn.net/minxihou JmilkFan:minxihou的技术博文方向是 算法&Open ...

  2. Python做数据预处理

    在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致. ...

  3. 线性可分SVM中线性规划问题的化简

    在网上找了许多关于线性可分SVM化简的过程,但似乎都不是很详细,所以凭借自己的理解去详解了一下. 线性可分SVM的目标是求得一个超平面(其实就是求w和b),在其在对目标样本的划分正确的基础上,使得到该 ...

  4. UVA Ananagrams /// map set

    https://vjudge.net/problem/UVA-156 题目大意: 输入文本,找出所有满足条件的单词——该单词不能通过字母重排而得到输入的文本中的另外一个单词. 在判断是否满足条件时,字 ...

  5. LeetCode 31. Next Permutation【Medium】

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  6. 我写的第一个DELPHI的控制台程序,留作纪念。

    program Project2; {$APPTYPE CONSOLE} uses  SysUtils; const s = 'hello' ;  var a , b , c : integer; f ...

  7. 获取linux性能数据

    import reimport osimport sysimport jsonimport socketfrom urllib import request,parseimport urllibfro ...

  8. merge存储引擎基本介绍和使用规范说明

    [以下两段截自MySql手册]: merge存储引擎,也被认识为mrg_myisam引擎,是一个"相同“的表可以被当作一个表来用的myisam表的集合.“相同”意味着所有表同样的列和索引信息 ...

  9. wpf datagrid 如何自定义行的控件实例,(textbox 并选中则全选)

    主要是为了用户输入方便 按回车,选中下一列,text自动获取焦点,输入状态 获取控件实例  https://blog.csdn.net/m15188153014/article/details/486 ...

  10. thinkphp 规则路由

    规则路由是一种比较容易理解的路由定义方式,采用ThinkPHP设计的规则表达式来定义. 规则表达式 规则表达式通常包含静态地址和动态地址,或者两种地址的结合,例如下面都属于有效的规则表达式: 'my' ...