我怎么这么zz啊。。。。

法一:

枚举最后一层的方案:没了。。。

法二:

生成函数:没了。

k*F^k(x),就是错位相减。

法三:

我的辣鸡做法:生成函数

求方案数,用的等比数列求和。。。。多项式快速幂,,O(nlog^2n)

求贡献和,构造G,然后求导,,,,

O(nlog^2n)

慢的一批。。。。

const int N=1e5+;
int jie[N],inv[N];
int n;
Poly F,G;
Poly ksm(Poly f,int n,int y){
Poly ret;ret.resize();ret[]=;
while(y){
if(y&) {
ret=ret*f;ret.resize(n);
}
f=f*f;f.resize(n);
y>>=;
}
return ret;
}
int main(){
int n=N-;
jie[]=;
for(reg i=;i<=n;++i) jie[i]=mul(jie[i-],i);
inv[n]=qm(jie[n],mod-);
for(reg i=n-;i>=;--i) inv[i]=mul(inv[i+],i+); Poly f;
f.resize(n);
for(reg i=;i<n;++i){
f[i]=inv[i];
}
Poly t=ksm(f,n,n),d=(-f)+;
Poly q=(-t)+;
F=f*q;F.resize(n);
F=F*(~d);
F.resize(n); // for(reg i=0;i<n;++i){
// cout<<mul(F[i],jie[i])<<" ";
// }cout<<endl; G=F*f; G.resize(n+);
G=Diff(G);
f=Diff(f);
G=G*(~f);
G.resize(n);
G=G-F; // for(reg i=0;i<n;++i){
// cout<<mul(G[i],jie[i])<<" ";
// }cout<<endl;
// return 0;
int T;
rd(T);
while(T--){
rd(n);
int ans=mul(G[n],qm(F[n]));
printf("%d\n",ans);
}
return ;
} }
signed main(){
Miracle::main();
return ;
}

luoguP5162 WD与积木的更多相关文章

  1. 洛谷 P5162 WD与积木 解题报告

    P5162 WD与积木 题目背景 WD整日沉浸在积木中,无法自拔-- 题目描述 WD想买\(n\)块积木,商场中每块积木的高度都是\(1\),俯视图为正方形(边长不一定相同).由于一些特殊原因,商家会 ...

  2. [P5162] WD与积木

    每种堆法(理解成名次序列,举例3,3,8,2和7,7,100,2都对应2,2,1,3这个名次序列)等概率出现:题目中"两种堆法不同当且仅当某个积木在两种堆法中处于不同的层中"可见这 ...

  3. 洛谷P5162 WD与积木 [DP,NTT]

    传送门 思路 真是非常套路的一道题-- 考虑\(DP\):设\(f_n\)为\(n\)个积木能搭出的方案数,\(g_n\)为所有方案的高度之和. 容易得到转移方程: \[ \begin{align*} ...

  4. Luogu5162 WD与积木(生成函数+多项式求逆)

    显然的做法是求出斯特林数,但没有什么优化空间. 考虑一种暴力dp,即设f[i]为i块积木的所有方案层数之和,g[i]为i块积木的方案数.转移时枚举第一层是哪些积木,于是有f[i]=g[i]+ΣC(i, ...

  5. [Luogu5162]WD与积木(多项式求逆)

    不要以为用上Stirling数就一定离正解更近,FFT都是从DP式本身出发的. 设f[i]为i个积木的所有方案的层数总和,g[i]为i个积木的方案数,则答案为$\frac{f[i]}{g[i]}$ 转 ...

  6. 洛谷 P5162 WD与积木【多项式求逆】

    设f[i]为i个积木能堆出来的种类,g[i]为i个积木能堆出来的种类和 \[ f[n]=\sum_{i=1}^{n}C_{n}^{i}g[n-i] \] \[ g[n]=\sum_{i=1}^{n}C ...

  7. P5162 WD与积木(多项式求逆+生成函数)

    传送门 题解 比赛的时候光顾着算某一个\(n\)的答案是多少忘了考虑不同的\(n\)之间的联系了--而且我也很想知道为什么推着推着会变成一个二项式反演-- 设\(f_n\)为\(n\)块积木时的总的层 ...

  8. [luogu5162]WD与积木

    设$g_{n}$表示$n$个积木放的方案数,枚举最后一层所放的积木,则有$g_{n}=\sum_{i=1}^{n}c(n,i)g_{n-i}$(因为积木有编号的所以要选出$i$个) 将组合数展开并化简 ...

  9. 【LUOGU???】WD与积木 NTT

    题目大意 把 \(n\) 个有标号物品分到一些有标号的箱子中且不允许为空,问期望箱子的数量. 多组询问. \(n\leq 100000\) 题解 记 \(f_i\) 为 \(i\) 个有标号物品分到一 ...

随机推荐

  1. k8s集群搭建之二:etcd集群的搭建

    一 介绍 Etcd是一个高可用的 Key/Value 存储系统,主要用于分享配置和服务发现. 简单:支持 curl 方式的用户 API (HTTP+JSON) 安全:可选 SSL 客户端证书认证 快速 ...

  2. Vue学习笔记【9】——Vue指令之v-for和key属性

    迭代数组(普通数组.对象数组) <ul> <li v-for="(item, i) in list">索引:{{i}} --- 姓名:{{item.name ...

  3. javascript表单验证的例子

    function checkUsername(){ //对username的内容进行验证. //要求:首字符是字母或下划线,其他由下划线字母数字组成,共4-20位 var inputOb=docume ...

  4. YII 中加入短信接口的函数

    public function smsto($telphone,$message) { //短信接口用户名 $uid,如果没有或不能发送请与客服联系 $uid = 'zyd'; //短信接口密码 $p ...

  5. I. Five Day Couple--“今日头条杯”首届湖北省大学程序设计竞赛(网络同步赛)

    题目描述:链接点此 这套题的github地址(里面包含了数据,题解,现场排名):点此 链接:https://www.nowcoder.com/acm/contest/104/H来源:牛客网 题目描述 ...

  6. ES数据导入导出

    ES数据导入导出   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

  7. wampServer2.2 You don't have permission to access /phpmyadmin/ on this server.

    You don't have permission to access /phpmyadmin/ on this server. 打开 然后

  8. C++中调用OC代码

    前言 最近项目中为了方便维护,底层统一使用C++编写.由于是项目是做屏幕共享sdk,所以只能底层的压缩.编解码使用C++,屏幕捕获部分Mac和win就自己实现了.那么问题就来了,因为是面向接口编程,所 ...

  9. MDK中问题:warning : type qualifier is meaningless on cast type return 的解决

    在MDK编译代码时,有时会出现这样的警告, warning : type qualifier is meaningless on cast type return 在MDK中,作如下设置: 即添加 : ...

  10. MySQL之explain命令解释

    explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了.如: explai ...