思路:

CF原题

ZYF有题解

O(nlog^2n)

//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int N=;
int n,m,q,cntA[N],cntB[N],A[N],B[N],rk[N],ht[N],sa[N],tsa[N],f[N][];
int from[N],cnt[N],rec[N],tl[N],ans[N];
char ch[N],s[N];
void SA(){
for(int i=;i<=n;i++)cntA[s[i]]++;
for(int i=;i<=;i++)cntA[i]+=cntA[i-];
for(int i=n;i;i--)sa[cntA[s[i]]--]=i;
rk[sa[]]=;
for(int i=;i<=n;i++)rk[sa[i]]=rk[sa[i-]]+(s[sa[i]]!=s[sa[i-]]);
for(int l=;rk[sa[n]]<n;l<<=){
memset(cntA,,sizeof(cntA));
memset(cntB,,sizeof(cntB));
for(int i=;i<=n;i++)cntA[A[i]=rk[i]]++,cntB[B[i]=(i+l<=n?rk[i+]:)]++;
for(int i=;i<=n;i++)cntA[i]+=cntA[i-],cntB[i]+=cntB[i-];
for(int i=n;i;i--)tsa[cntB[B[i]]--]=i;
for(int i=n;i;i--)sa[cntA[A[tsa[i]]]--]=tsa[i];
rk[sa[]]=;
for(int i=;i<=n;i++)rk[sa[i]]=rk[sa[i-]]+(A[sa[i]]!=A[sa[i-]]||B[sa[i]]!=B[sa[i-]]);
}
for(int i=,j=;i<=n;i++){
j=j?j-:;
while(s[i+j]==s[sa[rk[i]-]+j])j++;
ht[rk[i]]=j;
}
for(int i=;i<=n;i++)f[i][]=ht[i];
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
f[i][j]=min(f[i][j-],f[i+(<<(j-))][j-]);
}
bool check(int pos,int len){
int l=pos,r=pos;
for(int j=;~j;j--){
if(l+>=(<<j)&&f[l+-(<<j)][j]>=len)l-=(<<j);
if(f[r+][j]>=len)r+=(<<j);
}return rec[r]>=l;
}
int main(){
scanf("%d%d",&m,&q);
for(int i=;i<=m;i++){
scanf("%s",ch);
int t=strlen(ch);
s[n++]=' ';
for(int j=;j<t;j++)from[n]=i,s[n++]=ch[j];
tl[i]=n;
}n--,s[]=;SA();
int t=,k=;
for(int i=;i<=n;i++)if(from[sa[i]]){
if(!cnt[from[sa[i]]])k++;
cnt[from[sa[i]]]++;
if(k>=q){
for(;k-(cnt[from[sa[t]]]==)>=q;k-=(cnt[from[sa[t]]]==),--cnt[from[sa[t++]]]);
rec[i]=t;
}
}
for(int i=;i<=n;i++)if(from[sa[i]]){
int l=,r=tl[from[sa[i]]]-sa[i],dt=;
while(l<=r){
int mid=(l+r)>>;
if(check(i,mid))dt=mid,l=mid+;
else r=mid-;
}ans[from[sa[i]]]+=dt;
}
for(int i=;i<=m;i++)printf("%d ",ans[i]);
}

BZOJ 3473的更多相关文章

  1. 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)

    3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...

  2. BZOJ 3277 串 & BZOJ 3473 字符串 (广义后缀自动机、时间复杂度分析、启发式合并、线段树合并、主席树)

    标签那么长是因为做法太多了... 题目链接: (bzoj 3277) https://www.lydsy.com/JudgeOnline/problem.php?id=3277 (bzoj 3473) ...

  3. bzoj 3473 字符串 - 后缀数组 - 树状数组

    题目传送门 传送门 题目大意 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串 先用奇怪的字符把所有字符串连接起来. 建后缀树,数每个节点的子树内包含多少属 ...

  4. BZOJ 3473: 字符串 [广义后缀自动机]

    3473: 字符串 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 354  Solved: 160[Submit][Status][Discuss] ...

  5. bzoj 3277 串 && bzoj 3473 字符串 && bzoj 2780 [Spoj]8093 Sevenk Love Oimaster——广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...

  6. bzoj 3473 后缀自动机多字符串的子串处理方法

    后缀自动机处理多字符串字串相关问题. 首先,和后缀数组一样,用分割符连接各字符串,然后建一个后缀自动机. 我们定义一个节点代表的字符串为它原本代表的所有串去除包含分割符后的串.每个节点代表的字符串的数 ...

  7. bzoj 3277 & bzoj 3473,bzoj 2780 —— 广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...

  8. BZOJ 3277: 串/ BZOJ 3473: 字符串 ( 后缀数组 + RMQ + 二分 )

    CF原题(http://codeforces.com/blog/entry/4849, 204E), CF的解法是O(Nlog^2N)的..记某个字符串以第i位开头的字符串对答案的贡献f(i), 那么 ...

  9. BZOJ 3473 字符串

    思路 广义SAM的题目,先全部插入,然后每个字符串在SAM上匹配,如果发现当前sz小于k(就是前缀不满足条件),就跳fail(找前缀的后缀,就是找子串)到满足条件为止,然后一个满足条件的节点,它的所有 ...

  10. BZOJ 3473: 字符串 (广义后缀自动机)

    /* 广义后缀自动机, 每次加入维护 该right集合的set, 然后可以更新所有的parent,最终能够出现在k个串中right集合也就是set大小大于等于k的部分 这样的话就给了我们要跳的节点加了 ...

随机推荐

  1. AWK简单使用方法

    1. 命令格式 gawk [OPTIONS] 'program' FILES.... program:'PATTERN{ACTION}' 一条awk命令中,PATTERN和ACTION,至少存在一个才 ...

  2. HP下kafka的实践

    kafka 简介 Kafka 是一种高吞吐量的分布式发布订阅消息系统 kafka角色必知 producer:生产者. consumer:消费者. topic: 消息以topic为类别记录,Kafka将 ...

  3. 在此计算机中仅有部分visual studio2010产品已升级到SP1,只有全部升级,产品才能正常运行

    先说废话: 本人机子刚装系统Win10 专业版 1709 开始安装vs2010的时候中途报错了,有一个什么驱动不兼容,被我给关闭了,继续安装完,然后找不到vs的启动快捷方式,开始里面没有,于是我开始修 ...

  4. 【Codeforces 1034A】Enlarge GCD

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 设原来n个数字的gcd为g 减少某些数字之后 新的gcd肯定是g的倍数 即gx 我们可以枚举这个x值(x>=2) 看看原来的数字里面有多 ...

  5. [luoguP1941] 飞扬的小鸟(DP)

    传送门 动归,用f[i][j]表示到达第I列高度为j时最少需要飞的次数,容易想到最裸的转移: f[i][j]=min(min(f[i-1][j-up[i-1]*k]+k),f[i-1][j+down[ ...

  6. iphone学习

    苹果开发者联盟的网址:http://www.apple.com.cn/developer/ objective-C on the Mac     (Aoress)       作者:Dakrymple ...

  7. Ubuntu查看系统版本的方法

    1. less /etc/issue 2. less /proc/version 3. uname -a 4. lsb_release -a

  8. Eclipse安装Properties插件来编辑中文

    一.在线安装 输入这个地址:http://propedit.osdn.jp/eclipse/updates/ 二.离线安装 在官网上下载最新版本:https://zh.osdn.net/project ...

  9. J2SE基础:5.面向对象的特性2

    Final的使用 final在类之前 表示该类是终于类.表示该类不能再被继承. final在方法之前 表示该方法是终于方法,该方法不能被不论什么派生的子类覆盖. final在变量之前 表示变量的值在初 ...

  10. 用BOOST_FOREACH简化遍历操作

    BOOST_FOREACH能够方便的遍历STL容器. 仅仅须要头文件: #include <boost/foreach.hpp> 然后遍历容器vector/list/set/deque/s ...