P3390矩阵快速幂
题目背景
矩阵快速幂
题目描述
给定n*n的矩阵A,求A^k
输入输出格式
输入格式:
第一行,n,k
第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素
输出格式:
输出A^k
共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7
输入输出样例
2 1
1 1
1 1
1 1
1 1
说明
n<=100, k<=10^12, |矩阵元素|<=1000
//上板子!
#include<iostream>
#include<cstdio>
#define ll long long
#define mod 1000000007 using namespace std;
ll n,m;
struct node
{
ll a[][];
}ans,base; ll init()
{
ll x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} node mul(node a,node b)
{
node res;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
res.a[i][j]=;
for(int k=;k<=n;k++)
res.a[i][j]=(res.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
}
return res;
} node qw(node a,ll k)
{
node res=a;
while(k)
{
if(k&) a=mul(a,res);
res=mul(res,res);k>>=;
}
return a;
} int main()
{
n=init();m=init();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
ans.a[i][j]=init();
}
m--;
ans=qw(ans,m);
for (int i=;i<=n;i++)
{
for (int j=;j<n;j++) printf("%d ",ans.a[i][j]);
printf("%d\n",ans.a[i][n]);
}
}
算法:矩阵快速幂
P3390矩阵快速幂的更多相关文章
- 【luogu P3390 矩阵快速幂】 模板
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p 与 B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...
- Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- P3390 【模板】矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- Luogu P3390 【模板】矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- 【洛谷P3390】矩阵快速幂
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...
- 矩阵快速幂模板(pascal)
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...
- 快速幂&&矩阵快速幂
快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来, ...
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
随机推荐
- [C++] 化学方程式的格式化算法
网上普遍使用的化学方程式的格式普遍如下 例: KMnO4+FeSO4+H2SO4=Fe2(SO4)3+MnSO4+K2SO4+H2O 要把化学方程式格式化,单单一个正则表达式是非常反人类的,故可选用 ...
- 「 HDU P2089 」 不要62
和 HDOJ 3555 一样啊,只不过需要多判断个 ‘4’ 我有写 3555 直接去看那篇吧 这里只放代码 #include <iostream> #include <cstring ...
- [K/3Cloud]关于"选单"操作
之前有些人对这块有些疑问,比如: 1.选单操作是否和下推基本一样,都是公用同一套单据转换规则,只不过下推是源单推目标单,选单是目标单去选择源单,最终操作结果一样? 2,我想实现选单的时候,选单列表先通 ...
- tomcat服务器配置把Http协议强制转化为Https
1)在命令提示符窗口,进入Tomcat目录,执行以下命令: keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass ...
- 联想YOGA3一键恢复系统教程
- Unix stat
Linux 下有stat命令,可以非常方便的得到一个文件的inode等信息.但是今天在Solaris下使用stat居然没有这个命令.不过没关系,我们可以自己写这个命令,比如: #include < ...
- 【CV论文阅读】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来 ...
- 你不知道的JavaScript--Item34 大白话解说Promise
去年6月份. ES2015正式公布(也就是ES6.ES6是它的乳名),当中Promise被列为正式规范.作为ES6中最重要的特性之中的一个,我们有必要掌握并理解透彻.本文将由浅到深,解说Promise ...
- android混合动画实现
在android开发,我们会常常使用到动画,可是简单的一种动画(如旋转.缩放.渐变.位移等)有时候并不能满足我们项目的要求,这时候就须要运用到混合动画.那么在安卓中是怎样实现一个炫酷的混合动画,以下是 ...
- php訪问控制
訪问控制通过keywordpublic,protected和private来实现. 被定义为公有的类成员能够在不论什么地方被訪问.被定义为受保护的类成员则能够被其自身以及其子类和父类訪问.被定义为私有 ...