传送门

一开始理解错题意了……还以为是两个子序列相同的话只算一次……结果是子序列里相同的元素只算一次……

对于一个区间\([l,r]\),设其中\(x\)出现了\(k\)次,那么它的贡献就是它的权值乘上包含它的序列个数,即\(2^{r-l+1}-2^{r-l+1-k}\),总的序列个数减去不包含它的序列个数。因为\(x\)和\(k\)无关,所以只要统计出现次数为\(k\)的所有\(x\)的总和即可

不同的\(k\)最多只有\(\sqrt n\)个,于是用个邻接表之类的东西维护一下,然后每次询问就可以\(O(\sqrt n)\)解决了

然而因为模数不同,\(2\)的次幂不能预处理,于是可以设一个\(S=\sqrt n\),然后用\(O(\sqrt n)\)预处理出\(2^0,2^1,2^2,...,2^S\)和\(2^S,2^{2S},2^{3S},...\),这样每一个\(2\)的次幂都能\(O(1)\)求得了

然后用莫队维护一下询问就好了,总的时间复杂度为\(O(n\sqrt n)\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head;i;i=nxt[i])
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5;
int n,m,rt[N],a[N],ans[N],S,Pre[N],nxt[N],vis[N],cnt[N],head=0;
int P,f[1005],g[1005];
ll sum[N];
struct node{
int l,r,p,id;
inline bool operator <(const node &b)const
{return rt[l]==rt[b.l]?rt[b.l]&1?r<b.r:r>b.r:l<b.l;}
}q[N];
inline void add(R int x){nxt[x]=head,Pre[head]=x,head=x,Pre[x]=0;}
inline void del(R int x){x==head?head=nxt[x]:(nxt[Pre[x]]=nxt[x],Pre[nxt[x]]=Pre[x]);}
void update(R int x,R int y){
if(cnt[a[x]]){
sum[cnt[a[x]]]-=a[x];
if(--vis[cnt[a[x]]]==0)del(cnt[a[x]]);
}cnt[a[x]]+=y;
if(cnt[a[x]]){
sum[cnt[a[x]]]+=a[x];
if(++vis[cnt[a[x]]]==1)add(cnt[a[x]]);
}
}
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
void init(R int n){
f[0]=g[0]=1;
fp(i,1,S)f[i]=add(f[i-1],f[i-1]);
fp(i,1,n/S)g[i]=mul(g[i-1],f[S]);
}
inline int ksm(R int n){return mul(g[n/S],f[n%S]);}
int query(int l,int r,int p){
P=p,init(r-l+1);int res=0;
go(i)res=add(res,mul(sum[i]%P,dec(ksm(r-l+1),ksm(r-l+1-i))));
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),S=sqrt(n);
fp(i,1,n)a[i]=read(),rt[i]=(i-1)/S+1;
fp(i,1,m)q[i].l=read(),q[i].r=read(),q[i].p=read(),q[i].id=i;
sort(q+1,q+1+m);int l=1,r=0;
fp(i,1,m){
while(l>q[i].l)update(--l,1);
while(r<q[i].r)update(++r,1);
while(l<q[i].l)update(l++,-1);
while(r>q[i].r)update(r--,-1);
ans[q[i].id]=query(q[i].l,q[i].r,q[i].p);
}fp(i,1,m)print(ans[i]);return Ot(),0;
}

P5072 [Ynoi2015]盼君勿忘的更多相关文章

  1. 洛谷:P5072 [Ynoi2015]盼君勿忘

    原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即 ...

  2. 洛谷P5072 [Ynoi2015]盼君勿忘 [莫队]

    传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即 ...

  3. 【题解】Luogu P5072 [Ynoi2015]盼君勿忘

    众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题 我博客里对莫队的简单介绍 既然是莫队,我们就要考虑每多一个数或少一个数对答案的贡献是什么 假 ...

  4. Luogu P5072 [Ynoi2015]盼君勿忘

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(m\) 次询问,第 \(i\) 次询问需要求出 \([l_i,r_i]\) 内所有子序列去重之后的和,对 \(p_i\) 取模. \(\t ...

  5. [Ynoi2015]盼君勿忘

    题目大意: 给定一个序列,每次查询一个区间\([l,r]\)中所有子序列分别去重后的和\(\bmod p\)(每次询问模数不同). 解题思路: 在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后 ...

  6. 【洛谷5072】[Ynoi2015] 盼君勿忘(莫队)

    点此看题面 大致题意: 一个序列,每次询问一个区间\([l,r]\)并给出一个模数\(p\),求模\(p\)意义下区间\([l,r]\)内所有子序列去重后值的和. 题意转化 原来的题意看起来似乎很棘手 ...

  7. Luogu5072 [Ynoi2015]盼君勿忘 【莫队】

    题目描述:对于一个长度为\(n\)的序列,\(m\)次询问\(l,r,p\),计算\([l,r]\)的所有子序列的不同数之和\(\mathrm{mod} \ p\). 数据范围:\(n,m,a_i\l ...

  8. EC笔记:第二部分:12、复制对象时勿忘其每一个成分

    EC笔记:第二部分:12.复制对象时勿忘其每一个成分 1.场景 某些时候,我们不想使用编译器提供的默认拷贝函数(包括拷贝构造函数和赋值运算符),考虑以下类定义: 代码1: class Point{ p ...

  9. EC读书笔记系列之7:条款12 复制对象时勿忘其每一个成分

    记住: ★copying函数应确保复制“对象内的所有成员变量”及“所有base class成分” ★不要尝试以某个copying函数实现另一个copying函数.应该将共同机能放进第三个函数中,并由两 ...

随机推荐

  1. 简单使用 Mvc 内置的 Ioc

    简单使用 Mvc 内置的 Ioc 本文基于 .NET Core 2.0. 鉴于网上的文章理论较多,鄙人不才,想整理一份 Hello World(Demo)版的文章. 目录 场景一:简单类的使用 场景二 ...

  2. FastDFS的配置、部署与API使用解读(2)以字节方式上传文件的客户端代码(转)

    本文来自 诗商·柳惊鸿 Poechant CSDN博客,转载请注明源地址:FastDFS的配置.部署与API使用解读(2)上传文件到FastDFS分布式文件系统的客户端代码 在阅读本文之前,请您先通过 ...

  3. Redis 事务及其应用

    参考: http://www.runoob.com/redis/redis-transactions.html https://www.cnblogs.com/qlshine/p/5958504.ht ...

  4. 初识glib(1)

    最近搞DLNA,发现download的源码有许多glib库的使用.于是在Ubuntu中安装了glib库,以及简单测试了一些glib库函数,以此增加对glib的了解. 概述:glib库是Linux平台下 ...

  5. 微软开源 Try .NET - 创建交互式.NET文档

    微软近日开源了一个新平台--Try .NET,该平台可以让开发者在线上编写并运行 .NET 代码.微软介绍,Try .NET 是一个可嵌入的代码运行器,不仅可以直接在线上对自己或者他人的代码进行编辑. ...

  6. LeetCode(27)题解:Remove Element

    https://leetcode.com/problems/remove-element/ Given an array and a value, remove all instances of th ...

  7. 在C/C++中使用VLD检测内存泄漏

    VLD地址:https://kinddragon.github.io/vld/ 若出现内存泄漏,VS输出窗口会有如下提示: 若要确定造成内存泄漏的代码位置,仅需进入工程属性->链接器->调 ...

  8. db_create_file_dest

    <span><span>RAC中.将db_create_file_dest改动为本地路径,在创建表空间指定ASM磁盘组的时候还能够直接'+DATA'么?</span> ...

  9. 在VS2010中使用MySQL-转载

    下面这篇文章进过测试,确实可以.记下来,留作记录. http://blog.sina.com.cn/s/blog_782496390100qjcu.html

  10. log4j 路径环境变量配置和log4j加载配置

    1.lo4j日志路径从环境变量读取,log4j.xml配置如下: 具体配置如下: log4j.appender.R.Encoding=UTF-8 log4j.appender.R=org.apache ...