P4727 [HNOI2009]图的同构记数
如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可
不过直接交上去会T,于是加了几发大力优化
不知为何华丽的被小号抢了rank2
//minamoto
#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const int N=105,P=997;
int ans,n,m,fac[N],inv[N],rec[N],Gcd[N][N];
int GCD(int i,int j){
if(Gcd[i][j])return Gcd[i][j];
if(!i)return Gcd[i][j]=j;if(!j)return Gcd[i][j]=i;
return Gcd[i][j]=GCD(j,i%j);
}
int ksm(int x,int y){
int res=1;
for(;y;y>>=1,x=x*x%P)if(y&1)res=res*x%P;
return res;
}
void calc(int x){
int sum=0,mul=1,now=1;
fp(i,1,x)sum+=rec[i]/2;
fp(i,1,x)fp(j,i+1,x)sum+=Gcd[rec[i]][rec[j]];
fp(i,1,x)(mul*=rec[i])%=P;
fp(i,2,x){
if(rec[i]!=rec[i-1])(mul*=fac[now])%=P,now=0;
++now;
}(mul*=fac[now])%=P,mul=fac[n]*ksm(mul,P-2)%P;
(ans+=mul*ksm(m,sum)%P)%=P;
}
void dfs(int k,int x,int s){
if(!x)calc(k-1);if(x<s)return;
fp(i,s,x)rec[k]=i,dfs(k+1,x-i,i);
}
void init(){
fac[0]=1;fp(i,1,n)fac[i]=fac[i-1]*i%P;
fp(i,1,n)Gcd[i][0]=Gcd[0][i]=i;
fp(i,1,n)fp(j,1,n)GCD(i,j);
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),m=2,init();
dfs(1,n,1);(ans*=ksm(fac[n],P-2))%=P;
printf("%d\n",ans);return 0;
}
P4727 [HNOI2009]图的同构记数的更多相关文章
- [HNOI2009]图的同构记数
题意 在所以置换下,本质不同的\(n\)阶图个数 做法 可以假想成\(K_n\),边有黑白两色,黑边存在于原图,白边存在于补图 由于\(n\le 60\),可以手算出拆分数不大,所以我们爆搜置换群 对 ...
- Luogu P4727-- 【HNOI2009】图的同构记数
Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...
- BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)
题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...
- 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)
[BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...
- bzoj1488 [HNOI2009]图的同构 Burnside 引理
题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...
- bzoj1488[HNOI2009]图的同构
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec M ...
- 记数排序 & 桶排序 & 基数排序
为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...
- Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解
1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...
- 记数问题(0)<P2013_1>
记数问题 (count.cpp/c/pas) [问题描述] 试计算在区间1到n的所有整数中,数字x(0≤x≤9)共出现了多少次?例如,在1到11中,即在1.2.3.4.5.6.7.8.9.10.11 ...
随机推荐
- 解决在使用Amoeba遇到的问题
最近有同行在使用Amoeba 的过程中多少遇到了一些问题. 总结一下遇到问题的解决方法: 1.读写分离的时候设置的在queryRouter中设置无效? 读写分离配置的优先级别: 1)满足 ...
- 博客搬迁至Gitcafe
原先的Github pages貌似在国内被墙了,导致搜索引擎一直没有索引到,今天一怒之下迁到Gitcafe 虽然之前的模板用不成,害我重新找了一套,改了好半天,不过总算弄完了
- hdu 3691最小割将一个图分成两部分
转载地址:http://blog.csdn.net/xdu_truth/article/details/8104721 题意:题给出一个无向图和一个源点,让你求从这个点出发到某个点最大流的最小值.由最 ...
- SQLAlchemy(1):单表操作
SQLAlchemy 是一个 ORM框架:类对应表,类中的字段对应表中的列,类的对象对应表的一条记录:作用:帮助我们使用类和对象快速实现数据库操作操作数据库的方式: 1. 原生SQL - pymysq ...
- centos6.4下安装mysql
一.mysql简介 说到数据库,我们大多想到的是关系型数据库,比如mysql.oracle.sqlserver等等,这些数据库软件在windows上安装都非常的方便,在Linux上如果要安装数据库,咱 ...
- android开发里跳过的坑——onActivityResult在启动另一个activity的时候马上回调
该问题是由于被启动的activity的launchMode为singleTask模式,该模式下不可以使用onActivityResult,要使用onActivityResult,被启动的activit ...
- xming + putty remote GUI
xming 和putty的配置网上有很多 但是在使用时发现有个问题, 记录一下. 在配置完成后,远程运行图形化程序经常会说can not open display等错误. 这有可能是因为xming的安 ...
- Eclipse配色方案插件 真漂亮!
原文:https://my.oschina.net/jean/blog/208263 最近发现了一个Eclipse配色方案插件,这回给Eclipse配色太方便了. 插件主页:http://eclips ...
- android:“新版飞机大战”源码开源啦!
今天10.24,为了纪念程序猿的节日,把之前写过的一个"飞机大战"的一个源码开源了. 源码地址:https://github.com/nuptboyzhb/newplanegame ...
- keepalived + lvs marster 与 backup 之间的 高可用
简介 keepalived 是linux下一个轻量级的高可用解决方案,它与HACMP实现功能类似,都可以实现服务或者网络的高可用,但是又有差别:hacmp是一个专业的.功能完善的高可用软件,它提供了H ...