2679: [Usaco2012 Open]Balanced Cow Subsets

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 462  Solved: 197
[Submit][Status][Discuss]

Description

Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day (1 <= M(i) <= 100,000,000). FJ wants to streamline the process of milking his cows every day, so he installs a brand new milking machine in his barn. Unfortunately, the machine turns out to be far too sensitive: it only works properly if the cows on the left side of the barn have the exact same total milk output as the cows on the right side of the barn! Let us call a subset of cows "balanced" if it can be partitioned into two groups having equal milk output. Since only a balanced subset of cows can make the milking machine work, FJ wonders how many subsets of his N cows are balanced. Please help him compute this quantity.

给出N(1≤N≤20)个数M(i) (1 <= M(i) <= 100,000,000),在其中选若干个数,如果这几个数可以分成两个和相等的集合,那么方案数加1。问总方案数。

Input

 Line 1: The integer N. 
 Lines 2..1+N: Line i+1 contains M(i).

Output

* Line 1: The number of balanced subsets of cows.

Sample Input

4 1 2 3 4
INPUT DETAILS: There are 4 cows, with milk outputs 1, 2, 3, and 4.

Sample Output

3
OUTPUT DETAILS: There are three balanced subsets: the subset {1,2,3}, which can be partitioned into {1,2} and {3}, the subset {1,3,4}, which can be partitioned into {1,3} and {4}, and the subset {1,2,3,4} which can be partitioned into {1,4} and {2,3}.

HINT

 

Source

/*
判断能否划分为两个相等集合时用dp RE了
*/
#include<bits/stdc++.h> #define N 30
#define M 3111111
#define mod 2333333 using namespace std;
int n,m,ans,cnt,flag;
int a[N],vis[N],V[M];
int cur[N],sum[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} bool dfs2(int cur[],int k,int val,int n)
{
if(n== && cur[]!=cur[]) return false;
if(flag) return true;
if(val==sum[n]-val) {flag=;return true;}
if(k==n && !flag) return false;
for(int i=k+;i<=n;i++)
dfs2(cur,i,val+cur[i],n),dfs2(cur,i,val,n);
if(!flag)return false;
} bool judge()
{
int cnt_=,S=;
memset(cur,,sizeof cur);
memset(sum,,sizeof sum);
for(int i=;i<=n;i++) if(vis[i]) cur[++cnt_]=a[i],sum[cnt_]=sum[cnt_-]+cur[cnt_];
sort(cur+,cur+cnt_+);
for(int i=;i<=cnt_;i++) S+=S*+cur[i],S%=mod;
if(V[S]) return false;V[S]=;flag=;
if(sum[cnt_]%) return false;
if(dfs2(cur,,,cnt_)) return true;
return false; } void dfs(int lim,int k,int tot)
{
if(tot==lim)
{
if(judge()) ans++;
return;
}
if(k>n) return;
for(int i=k+;i<=n;i++)
{
if(vis[i]) continue;
vis[i]=;dfs(lim,k+,tot+);
vis[i]=;
}
} int main()
{
//freopen("ly.in","r",stdin);
n=read();
for(int i=;i<=n;i++) a[i]=read();
cnt=;
while(cnt<=n)
{
memset(vis,,sizeof vis);
dfs(cnt,,);
cnt++;
}
printf("%d\n",ans);
return ;
}

24暴搜

/*
折半搜索
枚举每个数如何选择,放入A就加,放入B就减
状压判断每个数的具体选择状态
最后双指针扫统计答案 若集合A的和 + 集合B的和为0那么就说明这两个集合构成的答案合法
*/
#include<bits/stdc++.h> #define N 22
#define ll long long using namespace std;
int n,v[N<<],maxdep,cnta,cntb;
bool vis[<<N];
ll ans;
struct node{
int state,x;
}a[<<N],b[<<N];
inline bool cmp1(node a,node b){return a.x<b.x;}
inline bool cmp2(node a,node b){return a.x>b.x;} inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(x=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} void dfs(int dep,int sum,int now,int flag)
{
if(dep==maxdep+)
{
if(!flag)
a[++cnta].x=sum,a[cnta].state=now;
else
b[++cntb].x=sum,b[cntb].state=now;
return;
}
dfs(dep+,sum,now,flag);
dfs(dep+,sum+v[dep],now | (<<(dep-)),flag);
dfs(dep+,sum-v[dep],now | (<<(dep-)),flag);
}
int main()
{
n=read();
for(int i=; i<=n; i++)v[i]=read();
maxdep=n/;dfs(,,,);
maxdep=n; dfs(n/+,,,);
sort(a+,a++cnta,cmp1);
sort(b+,b++cntb,cmp2); int l=,r=;
while(l<=cnta&&r<=cntb)
{
while(-a[l].x<b[r].x&&r<=cntb)r++;
int pos=r;
while(r<=cntb&&-a[l].x==b[r].x)
{
if(!vis[a[l].state | b[r].state])
{
vis[a[l].state | b[r].state]=;
ans++;
}r++;
}
if(l<cnta&&a[l].x==a[l+].x)r=pos;
l++;
}
printf("%lld\n",ans-);//减去空集
return ;
}

bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)的更多相关文章

  1. BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets

    考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...

  2. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  3. BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针

    BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...

  4. 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469

    题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...

  5. bzoj2679:[Usaco2012 Open]Balanced Cow Subsets

    思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...

  6. [Usaco2012 Open]Balanced Cow Subsets

    Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...

  7. 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets

    [算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...

  8. SPOJ-SUBSET Balanced Cow Subsets

    嘟嘟嘟spoj 嘟嘟嘟vjudge 嘟嘟嘟luogu 这个数据范围都能想到是折半搜索. 但具体怎么搜呢? 还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数 ...

  9. BZOJ.2679.Balanced Cow Subsets(meet in the middle)

    BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...

随机推荐

  1. Ajax的特点

    [传统提交方式] 客户端提交请求后,服务器会找到相应的资源进行执行.并将执行结果重新发送给客户端.客户端接收到服务器端的响应会进行重新解释并显示.此时的页面是一个全新的页面. [Ajax提交] 客户端 ...

  2. jQuery_DOM学习之------clone()

    jQuery_DOM学习之------clone() clone()---节点克隆: 方法: 1.clone()只克隆结构,事件将被丢弃 2.clone(true)结构和事件都将被克隆 例子: < ...

  3. Python模块:Re模块、附软件开发目录规范

    Re模块:(正则表达式) 正则表达式就是字符串的匹配规则 正则表达式在多数编程语言里都有相应的支持,Python里面对应的模块时re 常用的表达式规则:(都需要记住) “ . ”   #  默认匹配除 ...

  4. SOJ 2800_三角形

    真的是O不是0[看了discuss才发现.....一个大写的蠢 [题意]多个黑白三角形组成的倒三角,求白三角形组成的最大倒三角的面积 [分析]由于问的是倒三角个数,所以只需看与行数奇偶性相同的白色倒三 ...

  5. JSTL-SQL标签库

    主页:http://www.cnblogs.com/EasonJim/p/6958992.html的分支页. 本章的前提需要先新建数据表及添加默认数据,脚本如下: -- -- 数据库: `test` ...

  6. Unix时间戳(Unix timestamp)转换

    http://tool.chinaz.com/Tools/unixtime.aspx 如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScr ...

  7. VMware实用技巧

    1.VM快照管理 这个功能实在太常用,不用我多废话.这里只是提醒一下还没有用过快照的同学,赶紧的给自己的VM保存点快照吧,这样VM里的系统出了问题或是有其它需要很容易让你还原到原来的某个点,这功能可比 ...

  8. C# .NET using ManagementObjectSearcher提示缺少引用怎么办

    在下图中,即使引用了System.Management还是会出现报错   其实只要添加这条引用就可以了

  9. Office Excel找不到PERSONAL.XLS怎么办

    网上有人说这个文件在XLSTART里面,但是我里面没东西   打开PERSONAL.XLS的情况下,点击文件,属性,弹出窗口就有他的位置   你还是直接用Everything搜索一下吧.

  10. C++进阶之虚函数表

    C++通过继承(inheritance)和虚函数(virtual function)来实现多态性.所谓多态,简单地说就是,将基类的指针或引用绑定到子类的实例,然后通过基类的指针或引用调用实际子类的成员 ...