【题解】

  很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案。这样整个效率是O(N^2)的,显然不行。

  我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案。

  显然选择它的儿子作为集合点,它的儿子的子树内的奶牛可以少走当前点到儿子节点的距离dis,不在它儿子的子树内的奶牛要多走dis. 那么我们维护每个节点的子树内的奶牛总数(即点权和),就可以快速进行计算了。效率O(N).

  

 #include<cstdio>
#include<algorithm>
#define N 200010
#define rg register
#define LL long long
using namespace std;
int n,tot,last[N],v[N];
LL ans,sum,size[N],dis[N];
struct edge{
int to,pre,dis;
}e[N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void dfs(int x,int fa){
size[x]=v[x];
for(rg int i=last[x],to;i;i=e[i].pre)if((to=e[i].to)!=fa){
dis[to]=dis[x]+e[i].dis;
dfs(to,x); size[x]+=size[to];
}
}
void solve(int x,int fa,LL now){
ans=min(ans,now);
for(rg int i=last[x],to;i;i=e[i].pre)if((to=e[i].to)!=fa){
LL tmp=now-size[to]*e[i].dis+(sum-size[to])*e[i].dis;
solve(to,x,tmp);
}
}
int main(){
n=read();
for(rg int i=;i<=n;i++) v[i]=read(),sum+=v[i];
for(rg int i=;i<n;i++){
int u=read(),v=read(),w=read();
e[++tot]=(edge){v,last[u],w}; last[u]=tot;
e[++tot]=(edge){u,last[v],w}; last[v]=tot;
}
dfs(,);
for(rg int i=;i<=n;i++) ans+=dis[i]*v[i];
solve(,,ans);
printf("%lld\n",ans);
return ;
}

BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather的更多相关文章

  1. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  2. [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...

  3. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  5. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925

    题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...

  6. 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering

    题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...

  7. [USACO10MAR]伟大的奶牛聚集Great Cow Gat… ($dfs$,树的遍历)

    题目链接 Solution 辣鸡题...因为一个函数名看了我贼久. 思路很简单,可以先随便指定一个根,然后考虑换根的变化. 每一次把根从 \(x\) 换成 \(x\) 的一个子节点 \(y\),记录一 ...

  8. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...

随机推荐

  1. C#面向过程项目之飞行棋

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace 飞行棋V ...

  2. [C陷阱和缺陷] 第7章 可移植性缺陷

      C语言在许多不同的系统平台上都有实现.的确,使用C语言编写程序的一个首要原因就是,C程序能够方便地在不同的编程环境中移植.   不同的系统有不同的需求,因此我们应该能够预料到,机器不同则其上的C语 ...

  3. [转]C语言/C++中如何产生随机数

    C语言/C++怎样产生随机数:这里要用到的是rand()函数, srand()函数,和time()函数. 需要说明的是,iostream头文件中就有srand函数的定义,不需要再额外引入stdlib. ...

  4. 记录从数据库把数据初始化mongodb缓存的一些坑

    在项目启动时,需要做一些项目启动后的预操作,比如初始化数据进缓存等等. 这时就需要写listener,等监听.在项目启动时把数据缓存进mongodb. 但是这会有一个问题.项目一般都是把各种bean交 ...

  5. CSS之选择符、链接、盒子模型、显示隐藏元素

    <html> <head> <meta charset="utf-8"> <title>选择符.链接.盒子模型.显示隐藏元素< ...

  6. HTML DOM getElementById() 方法

    定义和用法 getElementById() 方法可返回对拥有指定 ID 的第一个对象的引用. 语法 document.getElementById(id) 说明 HTML DOM 定义了多种查找元素 ...

  7. [转]mysql update操作

    转自:http://www.cnblogs.com/ggjucheng/archive/2012/11/06/2756392.html update语法 Single-table语法: UPDATE ...

  8. Java编程思想读书笔记_第7章

    final关键字类似const: import java.util.*; public class FinalData { static Random rand = new Random(47); f ...

  9. 廖雪峰 Git教程学习笔记 原文 http://www.liaoxuefeng.com/

    一 .集中式与分布式        先说集中式版本控制系统,版本库是集中存放在中央服务器的,而干活的时候,用的都是自己的电脑,所以要先从中央服务器取得最新的版本,然后开始干活,干完活了,再把自己的活推 ...

  10. 可滚动的ResultSet类型 实现分页

    可滚动的ResultSet类型. 这个类型支持前后滚动取得纪录next().previous(),回到第一行first(),同时还支持要取的 ResultSet中的第几行 absolute(int n ...