bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】
设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \)
但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的点重新入队
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
const int N=200005;
int n,r[N],h[N],cnt;
long long s[N],f[N];
bool v[N];
vector<int>p[N];
struct qwe
{
int ne,to;
}e[N*5];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
s[i]=read(),f[i]=read(),r[i]=read();
for(int j=1;j<=r[i];j++)
{
int x=read();
add(i,x);
p[x].push_back(i);
}
}
queue<int>q;
for(int i=1;i<=n;i++)
q.push(i),v[i]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
long long nw=s[u];
for(int i=h[u];i;i=e[i].ne)
nw+=f[e[i].to];
if(nw>f[u])
continue;
f[u]=nw;
for(int i=0;i<p[u].size();i++)
if(!v[p[u][i]])
{
v[p[u][i]]=1;
q.push(p[u][i]);
}
}
printf("%lld\n",f[1]);
return 0;
}
bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】的更多相关文章
- [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏
设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...
- 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)
传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai代价将其分裂成另外的bib_ibi个怪物或者用cic_ici代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...
- 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP
[BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...
- BZOJ 3875: [Ahoi2014]骑士游戏 dp+spfa
题目链接: 题目 3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB 问题描述 [故事背景] 长期的宅男生活中,JYY又挖掘出了一 ...
- LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)
传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...
- BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)
容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...
- BZOJ3875: [Ahoi2014&Jsoi2014]骑士游戏
[传送门:BZOJ3875] 简要题意: 给出n种怪物,每种怪物都带有三个值,S[i],K[i],R[i],分别表示对他使用普通攻击的花费,使用魔法攻击的花费,对他使用普通攻击后生成的其他怪物. 每种 ...
- [AHOI2014/JSOI2014]骑士游戏
题目 思博贪心题写了一个半小时没救了,我也没看出这是一个\(spfa\)来啊 设\(dp_i\)表示彻底干掉第\(i\)只怪物的最小花费,一个非常显然的事情,就是对于\(k_i\)值最小的怪物满足\( ...
- 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏
题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...
随机推荐
- python学习之- 内置函数
内置方法:1:abs():取绝对值2:all():当可迭代对象里所有均为真时结果为真. all([1,2,3])3:any():当可迭代对象里任意一个数据为真结果即为真.any([0,1,2])4:a ...
- Java操作XML牛逼利器JDOM&DOM4J
JDOM JDOM 是一种使用 XML(标准通用标记语言下的一个子集) 的独特 Java 工具包,用于快速开发 XML 应用 程序. JDOM 官方网站:http://www.jdom.org/ 利 ...
- codeforces 873E(枚举+rmq)
题意 有n(n<=3000)个人参与acm比赛,每个人都有一个解题数,现在要决定拿金牌的人数cnt1,拿银牌的人数cnt2,拿铜牌的人数cnt3,各自对应一个解题数区间[d1,c1],[d2,c ...
- MySQL中的数据类型的长度范围和显示宽度(转)
长度范围是随数据类型就已经是固定的值,而显示宽度与长度范围无关. 以下是每个整数类型的存储和范围(来自MySQL手册) 类型 字节 最小值 最大值 (带符号的/无符号的) (带符号的/无符号的) TI ...
- kvm虚拟化学习笔记(四)之kvm虚拟机日常管理与配置
KVM虚拟化学习笔记系列文章列表----------------------------------------kvm虚拟化学习笔记(一)之kvm虚拟化环境安装http://koumm.blog.51 ...
- php 获取TZ时间格式
php将时间格式化成T Z的方法 gmdate("c") 这个函数的用法,学会了吧!!! <?php var_dump(gmdate("c")); ini ...
- android 不同进程间的调用 AIDL 实现通讯服务
android 不同进程间的调用 AIDL 实现通讯服务 近期对aidl android 不同进程间的调用,不同运用间的调用做了一些尝试: 过程例如以下: 1:首先在要被调用的程序里写好 ...
- 3 Angular 2 快速上手启动项目Demo
Angular2.x与Angular1.x 的区别类似 Java 和 JavaScript 或者说是雷锋与雷峰塔的区别,想要运行Angular2需要安装一些第三方依赖,不会像Angular1.x那样, ...
- SVN代码丢失惊魂
吓死了吓死了!要是那些代码丢了的话,要重新码一遍,我宁愿去吃屎. 某天快下班走人的时候,从SVN服务器update了本地代码,结果发现代码变回了上个月的样子.看SVN的日志,发现提交记录从6月22日一 ...
- 2015/12/25 ① 图灵测试 ② 安装jdk出现的问题 ③ 配置环境变量
①图灵测试 1,解释 图灵测试一词来源于计算机科学和密码学的先驱阿兰·麦席森·图灵写于1950年的一篇论文<计算机器与智能>.阿兰·麦席森·图灵1950年设计出这个测试,其内容是,如果电脑 ...