题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

输入输出样例

输入样例#1:

2 10 
1
-2
1

输出样例#1:

1
1

输入样例#2:

2 10
2
-3
1

输出样例#2:

2
1
2

输入样例#3:

2 10 
 

输出样例#3:

0

说明

30%:0<n<=2,|ai|<=100,an!=0,m<100

50%:0<n<=100,|ai|<=10^100,an!=0,m<100

70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000

100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000

分析:
一看想是用高精度做,可能还会超时,就没仔细做,打的暴力枚举,50分
正解:其实不是高精度……
对于很大的数,我们可以给它取模,因为等式两边取模仍然成立。但是枚举x来判断的话会超时,所以这里用到一个技巧:如果一个数x对于这个等式成立的话,那么x+mod(模的那个数)也会成立。
需要注意的是,只用一个数模可能会不对,所以多用几个检验一下。 代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 110
#define N 1000010
#define ll long long
using namespace std;
char s[N];
int n,m;
ll a[][M],p[]={,,};
bool ok[N];
bool check(int x,int num)
{
ll ans=,w=;
for(int i=;i<=n;i++)
{
ans=(ans+a[num][i]*w%p[num])%p[num];
w=(w*x)%p[num];
}
if(!(ans%p[num]))return true;
return false;
}
int main()
{
freopen("jh.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",s);int l=strlen(s);
bool flag=false;
for(int j=;j<=;j++)
{
int x=;
if(s[]=='-'){flag=true;x=;}
for(int k=x;k<l;k++)
a[j][i]=(a[j][i]*%p[j]+(ll)s[k]-'')%p[j];
if(flag)a[j][i]=p[j]-a[j][i];
}
}
for(int i=;i<=p[];i++)
if(check(i,))
{
for(int j=i;j<=m;j+=p[])
if(check(j,))
ok[j]=true;
}
int tot=;
for(int i=;i<=m;i++)
if(ok[i])tot++;
printf("%d\n",tot);
for(int i=;i<=m;i++)
if(ok[i])printf("%d\n",i);
return ;
}

解方程(codevs 3732)的更多相关文章

  1. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  2. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  3. HDU 4793 Collision --解方程

    题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...

  4. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  7. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  8. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  9. python 解方程

    [怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...

  10. python 解方程 和 python 距离公式实现

    解方程参考:https://zhuanlan.zhihu.com/p/24893371 缺点太慢,最后还是自己算了 距离公式参考:https://www.cnblogs.com/denny402/p/ ...

随机推荐

  1. VGG16 pre-trained model 实现 image classification

    站在巨人的肩膀上!使用VGG预先训练好的weight来,进行自己的分类. 下一阶段是在这上面进行自己的修改,完成自己想要的功能. Github源码 Github上有我全部的工程代码. 环境配置 Pyt ...

  2. 关于min-height:100%的解决办法

    前几天碰到一个问题,在用bs和jq2.2.0开发时,min-height设为100%在firefox和ie下没有起作用,先用css改了一下,但是min-height虽然是奏效了,但同时出现了其他css ...

  3. SpringBoot2.1.3修改tomcat参数支持请求特殊符号

    最近遇到一个问题,比如GET请求中,key,value中带有特殊符号,请求会报错,见如下URL: http://xxx.xxx.xxx:8081/aaa?key1=val1&a.[].id=1 ...

  4. Windows下的一个Nginx 批处理命令行控制台

    其实作用很简单,就是为了少输入几个字母,完成对Nginx的控制而已,同时也算是练习了一把bat批处理吧. @echo off&color e&Title Nginx 命令行控制台 cl ...

  5. spring中for循环中事务

    1.需求:批量插入一批数据,不用spring jdbc的批处理,用for循环插入数据. 2.遇到的问题:在for循环中,当一个插入不成功,前面插入成功的数据也将回滚. 3.初始设计:在service中 ...

  6. fabric的安装

    https://blog.csdn.net/lepton126/article/details/79148027

  7. 查询SQLServer2005中某个数据库中的表结构、索引、视图、存储过程、触发器以及自定义函数

    查询SQLServer2005中某个数据库中的表结构.索引.视图.存储过程.触发器以及自定义函数 2013-03-11 09:05:06|  分类: SQL SERVER|举报|字号 订阅     ( ...

  8. Spring Boot . 4 -- 定制 Spring Boot 配置

    覆写 Auto-Configuration 的类 利用外部属性进行动态配置 [本文] 定制 Error 页面 [第二篇] Spring Boot的自动配置可以节省很多无趣的配置工作,但是并不是所有的自 ...

  9. Spring对象类型——单例和多例

    由于看淘淘商城的项目,涉及到了项目中处理spring中bean对象的两种类型,分别是单例和多例,就在此记录一下,方便加深理解,写出更加健壮的代码. 一.单例和多例的概述 在Spring中,bean可以 ...

  10. Android图像处理之BitMap(2)

    Bitmap 相关 1. Bitmap比较特别 因为其不可创建 而只能借助于BitmapFactory 而根据图像来源又可分以下几种情况: * png图片 如:R.drawable.tianjin J ...