C. Kuro and Walking Route
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Kuro is living in a country called Uberland, consisting of nn towns, numbered from 11 to nn, and n−1n−1 bidirectional roads connecting these towns. It is possible to reach each town from any other. Each road connects two towns aa and bb. Kuro loves walking and he is planning to take a walking marathon, in which he will choose a pair of towns (u,v)(u,v) (u≠vu≠v) and walk from uu using the shortest path to vv (note that (u,v)(u,v) is considered to be different from (v,u)(v,u)).

Oddly, there are 2 special towns in Uberland named Flowrisa (denoted with the index xx) and Beetopia (denoted with the index yy). Flowrisa is a town where there are many strong-scent flowers, and Beetopia is another town where many bees live. In particular, Kuro will avoid any pair of towns (u,v)(u,v) if on the path from uu to vv, he reaches Beetopia after he reached Flowrisa, since the bees will be attracted with the flower smell on Kuro’s body and sting him.

Kuro wants to know how many pair of city (u,v) he can take as his route. Since he’s not really bright, he asked you to help him with this problem.

Input

The first line contains three integers n, x and y (1≤n≤3⋅105,1≤x,y≤n1≤n≤3⋅105,1≤x,y≤n, x≠y) - the number of towns, index of the town Flowrisa and index of the town Beetopia, respectively.

n−1lines follow, each line contains two integers a and b (1≤a,b≤n1≤a,b≤n, a≠b), describes a road connecting two towns a and b.

It is guaranteed that from each town, we can reach every other town in the city using the given roads. That is, the given map of towns and roads is a tree.

Output

A single integer resembles the number of pair of towns (u,v) that Kuro can use as his walking route.

Examples
input

Copy
3 1 3
1 2
2 3
output

Copy
5
input

Copy
3 1 3
1 2
1 3
output

Copy
4
Note

On the first example, Kuro can choose these pairs:

  • (1,2)(1,2): his route would be 1→2,
  • (2,3)(2,3): his route would be 2→3,
  • (3,2)(3,2): his route would be 3→2
  • (2,1)(2,1): his route would be 2→1,
  • (3,1)(3,1): his route would be 3→2→1.

Kuro can't choose pair (1,3)(1,3) since his walking route would be 1→2→31→2→3, in which Kuro visits town 11 (Flowrisa) and then visits town 33(Beetopia), which is not allowed (note that pair (3,1)(3,1) is still allowed because although Kuro visited Flowrisa and Beetopia, he did not visit them in that order).

On the second example, Kuro can choose the following pairs:

  • (1,2)(1,2): his route would be 1→2,
  • (2,1)(2,1): his route would be 2→1,
  • (3,2)(3,2): his route would be 3→1→2,
  • (3,1)(3,1): his route would be 3→1.

题意 给出一颗n个定点的树  树上有两个点 想 x,y  任意两点相互可达 但u到v的路径上先经过x再经过y是不允许的 (u,v)和(v , u)是两条不相同的路径

问满足上述条件的路径有多少条

解析

我们选定一个点作为根节点1 size[ i ]表示 以i为根节点的子树大小

若x的祖先没有y y 的祖先没有x 那么答案就是size[x]*size[y]

若x 的祖先有y  那么我们要找x的祖先 且 是y的儿子的那个节点 fa  答案就是(n-size[fa])*size[x]

同理得到另一种情况

AC代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+ ,mod = ,inf=0x3f3f3f3f;
const double pi=acos(-1.0);
typedef long long ll;
vector<int> g[maxn];
ll siz[maxn],fa[maxn];
ll n,x,y;
int vis[maxn];
void dfs1(int k,int f)
{
vis[k]=;
siz[k]=;
fa[k]=f;
for(int i=;i<g[k].size();i++)
{
int u=g[k][i];
if(vis[u]==&&u!=f)
{
dfs1(u,k);
siz[k]+=siz[u];
}
}
}
int dfs2(int k1,int k2)
{
if(fa[k1]==k2)
return k1;
else if(fa[k1]==)
return ;
else
return dfs2(fa[k1],k2);
}
int main()
{
cin>>n>>x>>y;
for(int i=;i<n-;i++)
{
int u,v;
cin>>u>>v;
g[u].push_back(v);
g[v].push_back(u);
}
memset(siz,,sizeof(siz));
memset(vis,,sizeof(vis));
dfs1(,);
ll ans;
int f1=dfs2(x,y),f2=dfs2(y,x);
//cout<<f1<<" "<<f2<<endl;
if(f1==f2)
ans=siz[x]*siz[y];
else if(f1==)
ans=(n-siz[f2])*siz[y];
else
ans=(n-siz[f1])*siz[x];
// for(int i=1;i<=n;i++)
// cout<<i<<" "<<fa[i]<<endl;
cout<<n*(n-)-ans<<endl;
}

Codeforces Round #482 (Div. 2) C Kuro and Walking Route的更多相关文章

  1. Codeforces Round #482 (Div. 2) : Kuro and GCD and XOR and SUM (寻找最大异或值)

    题目链接:http://codeforces.com/contest/979/problem/D 参考大神博客:https://www.cnblogs.com/kickit/p/9046953.htm ...

  2. 【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM

    题意: 给你一个空的可重集,支持以下操作: 向其中塞进一个数x(不超过100000), 询问(x,K,s):如果K不能整除x,直接输出-1.否则,问你可重集中所有是K的倍数的数之中,小于等于s-x,并 ...

  3. Codeforces Round #482 (Div. 2) C 、 Kuro and Walking Route(dfs)979C

    题目链接:http://codeforces.com/contest/979/problem/C 大致题意 给出n个点,有n-1个边将他们链接.给出x,y,当某一路径中出现x....y时,此路不通.路 ...

  4. Codeforces Round #482 (Div. 2) :C - Kuro and Walking Route

    题目连接:http://codeforces.com/contest/979/problem/C 解题心得: 题意就是给你n个点,在点集中间有n-1条边(无重边),在行走的时候不能从x点走到y点,问你 ...

  5. 【Codeforces Round #482 (Div. 2) C】Kuro and Walking Route

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把x..y这条路径上的点标记一下. 然后从x开始dfs,要求不能走到那些标记过的点上.记录节点个数为cnt1(包括x) 然后从y开始 ...

  6. Codeforces Round #482 (Div. 2) :B - Treasure Hunt

    题目链接:http://codeforces.com/contest/979/problem/B 解题心得: 这个题题意就是三个人玩游戏,每个人都有一个相同长度的字符串,一共有n轮游戏,每一轮三个人必 ...

  7. Codeforces Round #482 (Div. 2) B题

    题目链接:http://codeforces.com/contest/979/problem/B B. Treasure Hunt time limit per test1 second memory ...

  8. 【枚举】【贪心】Codeforces Round #482 (Div. 2) B. Treasure Hunt

    题意:给你3个字符串,3个人各对自己的字符串执行n轮操作,每一次选择一个字符变为任意一个和原来不同的字符.最后问你谁能使自己的串中的任意重复子串出现的次数最大化. 显然只需关注字符而非子串. 枚举每个 ...

  9. Codeforces Round #482 (Div. 2) B、Treasure Hunt(模拟+贪心)979B

    题目 大致题意 n表示要进行n次操作,接着给出三个字符串,表示三个人初始拥有的串.每次操作要替换字符串中的字母,询问最后在游戏中曾出现过的相同的子串谁最多. 思路 (1)  讨论最多的子串,肯定是全部 ...

随机推荐

  1. Oracle事务控制语言

    事务控制语言在各大数据库中都差不多,本文讲讲Oracle和别的数据库不一样的地方 Oracle每条sql语句都是一个事务,像insert.update.delete之类的,每次执行过都要commit提 ...

  2. P1062 数列

    题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,13,… (该序列实际上就是 ...

  3. mysql中int(1)与int(10)的区别

    INT[(M)] [UNSIGNED] [ZEROFILL] 普通大小的整数.带符号的范围是-2147483648到2147483647.无符号的范围是0到4294967295. INT(1) 和 I ...

  4. JVM最多能创建多少个线程: unable to create new native thread

    转载自:http://www.rigongyizu.com/jvm-max-threads/ 有应用报出这样的异常“java.lang.OutOfMemoryError: unable to crea ...

  5. 面向对象编程(OOP)基础知识(一)

    Java是一个支持并发.基于类和面向对象的计算机编程语言. 下面列出了面向对象软件开发的优点: 1.代码开发模块化,更易维护和修改. 2.代码复用. 3.增强代码的可靠性和灵活性. 4.增加代码的可理 ...

  6. 原生 js 整理

    常见的事件 window.event     代表着,事件的状态,只有在事件的过程中才有效.

  7. vue中滚动页面,改变样式&&导航栏滚动时,样式透明度修改

    vue中滚动页面,改变样式&&导航栏滚动时,样式透明度修改.vue <div class="commonHeader" v-bind:class=" ...

  8. 面试之Redis

    面:缓存中间件--Memcached和Redis的区别是什么? 答:Memcached的优点是简单易用,代码层次类似与Hash.支持简单数据类型,但不支持数据持久化存储,也不支持主从同步,也不支持分片 ...

  9. 第1节 hive安装:2、3、4、5、(多看几遍)

    第1节 hive安装: 2.数据仓库的基本概念: 3.hive的基本介绍: 4.hive的基本架构以及与hadoop的关系以及RDBMS的对比等 5.hive的安装之(使用mysql作为元数据信息存储 ...

  10. torch学习笔记(二) nn类结构-Linear

    Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize 和 outp ...