「 HDU P4734 」 F(x)
# 题目大意
对于一个数 $x$,它的每一位数字分别是 $A_{n}A_{n-1}A_{n-2}\cdots A_{2}A_{1}$,定义其权重 $f(x)=\sum_{i=1}^{n}\left(A_i\times 2^{i-1}\right)$。
现在给定两个数 $A,B$ 求出 $[0,B]$ 中满足 $f(i)\le f(A)$ 的数的个数。
# 解题思路
数位 $\text{DP}$。
我一开始设的状态是 $dp[i][j]$ 表示到第 $i$ 位,并且现在已经枚举到的数位的权重是 $j$,写完之后发现会 $\text{TLE}$,因为相对与每组数据来说它们的 $A$ 不是一样的,按上面的状态设计方程会导致记忆化下来的答案并不是通用的,需要每次都 $memset$ $dp$ 数组。
然后考虑另一种状态,另第一维的意义不变,将第二维变成剩余的可用权值(大体就是那么个意思),然后做记忆化。
# 附上代码
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int a, b, pow[], T, dp[][], cnt, num[], fa;
inline void init() {
pow[] = ;
for(int i=; i<=; i++) pow[i] = pow[i-] * ;
}
inline int dfs(int l, int f, bool limit) {
if(dp[l][f] && !limit) return dp[l][f];
if(l == ) return f >= ;
int ans = , mx = limit ? num[l] : ;
for(int i=; i<=mx; i++) {
if(f - i * pow[l-] < ) continue;
ans += dfs(l-, f-i*pow[l-], limit && i==mx);
}
return (!limit) ? dp[l][f]=ans : ans;
}
inline int solve(int x) {
int k = ;
while (x) {
num[++k] = x % ;
x /= ;
}
return dfs(k, fa, true);
}
inline void fff(int x) {
fa = ;
int k = ;
while (x) {
fa += pow[k] * (x % );
k ++;
x /= ;
}
}
int main() {
init();
scanf("%d", &T);
while (T--) {
scanf("%d%d", &a, &b);
fff(a);
printf("Case #%d: %d\n", ++cnt, solve(b));
}
}
「 HDU P4734 」 F(x)的更多相关文章
- Solution -「HDU 6875」Yajilin
\(\mathcal{Description}\) Link.(HDU 裂开了先放个私链 awa.) 在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- 「 HDU 1978 」 How many ways
# 解题思路 记忆化搜索 一个点可以跳到的点,取决于它现在的能量.而且有一个显而易见的性质就是一条可行路径的终点和起点的横坐标之差加上纵坐标之差肯定小于等于起点的能量. 因为跳到一个点之后,能量和之前 ...
- 「 HDU P3336 」 Count the string
题目大意 给出一个长度为 $n$ 的字符串 $s$ 要求你求出 $s$ 的每一个前缀在 $s$ 中出现的次数之和.$n\le 200000$. 解题思路 暴力的对每一个前缀进行一次匹配,求出出现次数后 ...
- Solution -「HDU 6643」Ridiculous Netizens
\(\mathcal{Description}\) Link. 给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\ ...
- Solution -「HDU #6566」The Hanged Man
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...
- 「HDU - 2857」Mirror and Light(点关于直线的对称点)
题目链接 Mirror and Light 题意 一条直线代表镜子,一个入射光线上的点,一个反射光线上的点,求反射点.(都在一个二维平面内) 题解 找出入射光线关于镜子直线的对称点,然后和反射光线连边 ...
- 「 HDU P2089 」 不要62
和 HDOJ 3555 一样啊,只不过需要多判断个 ‘4’ 我有写 3555 直接去看那篇吧 这里只放代码 #include <iostream> #include <cstring ...
- 「 HDU P3555 」 Bomb
# 题目大意 给出 $\text{T}$ 个数,求 $[1,n]$ 中含 ‘49’ 的数的个数. # 解题思路 求出不含 '49' 的数的个数,用总数减去就是答案. 数位 $DP$,用记忆化来做. 设 ...
随机推荐
- vi常用设置
vi不能使用退格键和上下左右键 因为ubuntu默认安装的是vim-tiny,所以需要安装完整版本 apt-get install vim 安装完再使用就可以了 vi本身是不带颜色的,vim带颜色,使 ...
- SGU 176 Flow construction【有上下界最小流】
正好考到了所以翻一些题来做--猛然发现搞了半个月的网络流却没做两道上下界(不过这种题好像是比较少233) 首先建立超级源汇ss,tt,没限制的边照常连,对于有限制的边(u,v,mn,mx),连接(u, ...
- element-ui公用模态框自定义样式与scoped样式生效问题解决方案
//先插如效果图 里面内容均为传进来的.包括取消与确定按钮,因为每个页面的绑定事件不一样. //下面这个图片为初始样式 //拖动模态框指令需要插件.详情看我下一篇,以下是地址 https://www. ...
- 手机端实现6位短信验证码input输入框效果(样式及代码方法)
微信移动端4位.6位.多位验证码密码输入框功能的实现代码,实现思路: 方案1: 写一个简单的input框. 评估:样式不好看,待定. 方案2: 就是用6个input框,每输入一个数字之后,切换到下一个 ...
- python网络爬虫之二requests模块
requests http请求库 requests是基于python内置的urllib3来编写的,它比urllib更加方便,特别是在添加headers, post请求,以及cookies的设置上,处理 ...
- win10系统下使用EDGE浏览器找不到Report Builder 启动图标
Win10系统下如果要使用Report Builder,可能存在EDGE浏览器或者Chrome找不到ReportBuilder的启动图标的情况,此时,应以管理员权限运行IE浏览器,即可看到图标.
- CentOS安装GlassFish4.0 配置JDBC连接MySQL
转自:http://linux.it.net.cn/CentOS/course/2014/0724/3319.html 版本glassfish-4.0.zip 1.解压,拷贝到指定安装路径 unz ...
- Rsync 12种故障排查及思路
Rsync 故障排查整理 Rsync服务常见问题汇总讲解: ====================================================================== ...
- ambari-server启动报错500 status code received on GET method for API:/api/v1/stacks/HDP/versions/2.4/recommendations Error message : Server Error解决办法(图文详解)
问题详情 来源是,我在Ambari集群里,安装Hue. 给Ambari集群里安装可视化分析利器工具Hue步骤(图文详解 所遇到的这个问题. 然后,去ambari-server的log日志,查看,如下 ...
- AJPFX总结mysql复制表结构,表数据
1.复制表结构及数据到新表CREATE TABLE 新表 SELECT * FROM 旧表 这种方法会将oldtable中所有的内容都拷贝过来,当然我们可以用delete from newtable; ...