官方博客 WaveNet: A Generative Model for Raw Audio

paper地址:paper

Abstract

WaveNet是probabilistic and autoregressive的生成,对每个预测的audio sample的分布都基于前面的前面的sample分布。在TTS的应用中,能达到state_of_art的效果,听觉感受上优于parametric and concatenative的系统。同时系统还可以生成音乐,作为discriminative model对phoneme做识别

Introduction

受neural autore-gressive generative models生成图像的启发[1][2]来生成wideband raw audio waveforms,主要挑战在于每秒采样率高达16,000 samples。

Contributions

1.We show that WaveNets can generate raw speech signals with subjective naturalness never before reported in the field of text-to-speech (TTS), as assessed by human raters。

2. In order to deal with long-range temporal dependencies needed for raw audio generation,we  develop new architectures based on dilated causal convolutions,  which  exhibit  very large receptive fields.(超大感受野)

3.We show that when conditioned on a speaker identity, a single model can be used to generate different voices

4.The same architecture shows strong results when tested on a small speech recognition dataset, and is promising when used to generate other audio modalities such as music

WaveNet

概率模型: Each audio sample xt is therefore conditioned on the samples at all previous timesteps, the conditional probability distribution is modelled by a stack of convolutional layers.

The model outputs a categorical distribution over the next value Xwith a softmax layer and it is optimized to maximize the log-likelihood of the data w.r.t.  the parameters.  Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting

  • DILATED CAUSAL CONVOLUTIONS:

The main ingredient of WaveNet are causal convolution。Because models with causal convolutions do not have recurrent connections, they are typically faster to train than RNNs, especially when applied to very long sequences(只有因果卷积,而没有递归连接)。One of the problems of causal convolutions is that they require many layers,  or large filters to increase the receptive field. For example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1)

A dilated convolution (also called a trous, or convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step。Stacked dilated convolutions enable networks to have very large receptive fields with just a few layers, while preserving the input resolution throughout the network as well as computational efficiency

  • SOFTMAX DISTRIBUTIONS

Softmax distribution tends to work better to modeling the conditional distributions over the individual audio samples。Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible value.这里用[3]提出的$\{mu}-law$方法做了一个量化压缩,将输出概率数目压缩到了256个可能的值

这个非线性压缩变换后的声音效果和原声音相差不大

  • GATED ACTIVATION UNITS

使用了和[1]相同的gated激活单元:

  • RESIDUAL AND SKIP CONNECTIONS

  Both resudula and skip method are used to speed up convergence and enable training of much deeper model

  

  • CONDITIONAL WAVE NET

For example, in a multi-speaker setting we can choose the speaker by feeding the speaker identity to the model as an extra input.  Similarly, for TTS we need to feed information about the text as an extra input.

Global conditioning is characterised by a single latent representation h that influences the output distribution across all timestep:

模型中采用的扩大卷积的方法来极大的增加感受野,对序列数据建模很有用

[1]van den Oord, A  ̈ aron, Kalchbrenner, Nal, and Kavukcuoglu, Koray. Pixel recurrent neural networks.

[2]J  ́ ozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer, Noam, and Wu, Yonghui. Exploring the

[3] ITU-T. Recommendation G. 711. Pulse Code Modulation (PCM) of voice frequencies, 1988

WaveNet: 原始音频生成模型的更多相关文章

  1. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  2. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  3. 快速开发 HTML5 WebGL 的 3D 斜面拖拽生成模型

    前言 3D 场景中的面不只有水平面这一个,空间是由无数个面组成的,所以我们有可能会在任意一个面上放置物体,而空间中的面如何确定呢?我们知道,空间中的面可以由一个点和一条法线组成.这个 Demo 左侧为 ...

  4. 原始的生成对抗网络GAN

    论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像, ...

  5. GAN实战笔记——第二章自编码器生成模型入门

    自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...

  6. 《Entity Framework 6 Recipes》中文翻译系列 (40) ------ 第七章 使用对象服务之从跟踪器中获取实体与从命令行生成模型(想解决EF第一次查询慢的,请阅读)

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 7-5  从跟踪器中获取实体 问题 你想创建一个扩展方法,从跟踪器中获取实体,用于数 ...

  7. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  8. MySQL生成模型

    根据数据库表生成Model using System; using System.Collections.Generic; using System.Data; using System.Text; ...

  9. 生成模型(Generative)和判别模型(Discriminative)

    生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object ...

随机推荐

  1. Maven配置将war包部署到Tomcat(tomcat7-maven-plugin)

    Tomcat7/8: 提示:经过测试Tomcat7的配置和插件在Tomcat8中能正常运行 tomcat7-maven-plugin官方帮助文档:http://tomcat.apache.org/ma ...

  2. 新闻:融资600万 他用一套系统优化15大HR工作场景 精简入转调离 月开通214家 | IT桔子

    新闻:融资600万 他用一套系统优化15大HR工作场景 精简入转调离 月开通214家 | IT桔子 功劳说不上

  3. winform客户端程序实时读写app.config文件

    新接到需求,wcf客户端程序运行时,能实时修改程序的打印机名称: 使用XmlHelper读写 winform.exe.config文件修改后始终,不能实时读取出来,查询博客园,原来已有大神解释了: 获 ...

  4. JavaScript 层

    代码Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--& ...

  5. win7系统使用engine进行开发报错,“未能加载文件或程序集”

    http://www.gisall.com/wordpress/?p=7161 使用vs2010加 arcengine 开发winfrom应用,新建了uc,拖了几个控件后,编译,报未能加载文件或程序集 ...

  6. BUPT复试专题—寻找第 K 小的数(2009)

    题目描述 给你 n 个完全不相同整数(n<=300),每一个数都大于 0 并且小于 1000,请找出 第 k 小的数. 输入 输入包括两行,第一行用空格隔开的两个数 n 和 k;第二行有 n 个 ...

  7. [CSS3] Understand CSS Selector Specificity

    It is hard to explain css selector specificty, to easy way to understand it is by playing around wit ...

  8. [WASM] Set up wasm-bindgen for easy Rust/JavaScript Interoperability

    Interoperability between JavaScript and Rust is limited to numerics and accessing memory directly. S ...

  9. Solidworks如何绘制标准螺纹线

    1 绘制螺旋线,螺距为0.5mm,圈数为15,起始角度为0°.   2                

  10. RPM安装mysql5.6

    原文 http://blog.csdn.net/liumm0000/article/details/18841197 a. 检查MySQL及相关RPM包,是否安装,如果有安装,则移除(rpm –e 名 ...