官方博客 WaveNet: A Generative Model for Raw Audio

paper地址:paper

Abstract

WaveNet是probabilistic and autoregressive的生成,对每个预测的audio sample的分布都基于前面的前面的sample分布。在TTS的应用中,能达到state_of_art的效果,听觉感受上优于parametric and concatenative的系统。同时系统还可以生成音乐,作为discriminative model对phoneme做识别

Introduction

受neural autore-gressive generative models生成图像的启发[1][2]来生成wideband raw audio waveforms,主要挑战在于每秒采样率高达16,000 samples。

Contributions

1.We show that WaveNets can generate raw speech signals with subjective naturalness never before reported in the field of text-to-speech (TTS), as assessed by human raters。

2. In order to deal with long-range temporal dependencies needed for raw audio generation,we  develop new architectures based on dilated causal convolutions,  which  exhibit  very large receptive fields.(超大感受野)

3.We show that when conditioned on a speaker identity, a single model can be used to generate different voices

4.The same architecture shows strong results when tested on a small speech recognition dataset, and is promising when used to generate other audio modalities such as music

WaveNet

概率模型: Each audio sample xt is therefore conditioned on the samples at all previous timesteps, the conditional probability distribution is modelled by a stack of convolutional layers.

The model outputs a categorical distribution over the next value Xwith a softmax layer and it is optimized to maximize the log-likelihood of the data w.r.t.  the parameters.  Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting

  • DILATED CAUSAL CONVOLUTIONS:

The main ingredient of WaveNet are causal convolution。Because models with causal convolutions do not have recurrent connections, they are typically faster to train than RNNs, especially when applied to very long sequences(只有因果卷积,而没有递归连接)。One of the problems of causal convolutions is that they require many layers,  or large filters to increase the receptive field. For example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1)

A dilated convolution (also called a trous, or convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step。Stacked dilated convolutions enable networks to have very large receptive fields with just a few layers, while preserving the input resolution throughout the network as well as computational efficiency

  • SOFTMAX DISTRIBUTIONS

Softmax distribution tends to work better to modeling the conditional distributions over the individual audio samples。Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible value.这里用[3]提出的$\{mu}-law$方法做了一个量化压缩,将输出概率数目压缩到了256个可能的值

这个非线性压缩变换后的声音效果和原声音相差不大

  • GATED ACTIVATION UNITS

使用了和[1]相同的gated激活单元:

  • RESIDUAL AND SKIP CONNECTIONS

  Both resudula and skip method are used to speed up convergence and enable training of much deeper model

  

  • CONDITIONAL WAVE NET

For example, in a multi-speaker setting we can choose the speaker by feeding the speaker identity to the model as an extra input.  Similarly, for TTS we need to feed information about the text as an extra input.

Global conditioning is characterised by a single latent representation h that influences the output distribution across all timestep:

模型中采用的扩大卷积的方法来极大的增加感受野,对序列数据建模很有用

[1]van den Oord, A  ̈ aron, Kalchbrenner, Nal, and Kavukcuoglu, Koray. Pixel recurrent neural networks.

[2]J  ́ ozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer, Noam, and Wu, Yonghui. Exploring the

[3] ITU-T. Recommendation G. 711. Pulse Code Modulation (PCM) of voice frequencies, 1988

WaveNet: 原始音频生成模型的更多相关文章

  1. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  2. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  3. 快速开发 HTML5 WebGL 的 3D 斜面拖拽生成模型

    前言 3D 场景中的面不只有水平面这一个,空间是由无数个面组成的,所以我们有可能会在任意一个面上放置物体,而空间中的面如何确定呢?我们知道,空间中的面可以由一个点和一条法线组成.这个 Demo 左侧为 ...

  4. 原始的生成对抗网络GAN

    论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像, ...

  5. GAN实战笔记——第二章自编码器生成模型入门

    自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...

  6. 《Entity Framework 6 Recipes》中文翻译系列 (40) ------ 第七章 使用对象服务之从跟踪器中获取实体与从命令行生成模型(想解决EF第一次查询慢的,请阅读)

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 7-5  从跟踪器中获取实体 问题 你想创建一个扩展方法,从跟踪器中获取实体,用于数 ...

  7. 生成模型(Generative Model)与判别模型(Discriminative Model)

    摘要: 1.定义 2.常见算法 3.特性 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标 ...

  8. MySQL生成模型

    根据数据库表生成Model using System; using System.Collections.Generic; using System.Data; using System.Text; ...

  9. 生成模型(Generative)和判别模型(Discriminative)

    生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object ...

随机推荐

  1. spring boot 文件上传大小配置

    在启动类中,添加bean import javax.servlet.MultipartConfigElement; import org.springframework.boot.SpringAppl ...

  2. JQuery select 编程时选中原有的值

    js 此为核心代码 $(document).ready(function(){ $("#carTypeId").attr("value",'${carInfo. ...

  3. 未能加载文件或程序集“System.EnterpriseServices, Version=4.0.0.0或2.0.0.0

    未能加载文件或程序集“System.EnterpriseServices, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50 ...

  4. 如何细粒度地控制你的MyBatis二级缓存(mybatis-enhanced-cache插件实现)

    前几天网友chanfish 给我抛出了一个问题,笼统地讲就是如何能细粒度地控制MyBatis的二级缓存问题,酝酿了几天,觉得可以写个插件来实现这个这一功能.本文就是从问题入手,一步步分析现存的MyBa ...

  5. 6.JAVA语言基础部分--数据库操作

    操作数据数据流程:得到Connecnt->获取Statement对象->执行sql语句返回ResultSet 1.通过DriverManager.getConnection("j ...

  6. android 获得系统时间

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools= ...

  7. 利用背景流量数据(contexual flow data) 识别TLS加密恶意流量

    识别出加密流量中潜藏的安全威胁具有很大挑战,现已存在一些检测方法利用数据流的元数据来进行检测,包括包长度和到达间隔时间等.来自思科的研究人员扩展现有的检测方法提出一种新的思路(称之为“dataomni ...

  8. ubuntu harddisk uuid already exists

    就是virtualbox下先用u盘启动的虚拟机,把U盘的vhdk文件拷贝到本机,然后再启动,就有问题,提示什么uuid already exist 找了半天,网上基本都是说windows下如何用的.. ...

  9. JNI基础知识

    JNI是在学习Android HAL时必须要面临一个知识点,假设你不了解它的机制,不了解它的使用方式,你会被本地代码绕的晕头转向,JNI作为一个中间语言的翻译官在运行Java代码的Android中有着 ...

  10. 从实例看hibernate的主键生成策略

    学习了hibernate会发现.hibernate中有实体类.实体类的映射文件.可是我们怎么样才干知道实体类的主键是如何的生成方式呢?hibernate提供的主键生成策略帮我们完美地解答了这个疑问.以 ...