POJ 2279
线性DP
本题的正解是杨氏矩阵与钩子定理
但是这道题用DP的思想非常好

但是这样会MLE...
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
unsigned int dp[31][31][31][31][31], n, num[6];
int main() {
while(1) {
cin >> n;
if(!n) break;
memset(num, 0, sizeof(num));
memset(dp, 0, sizeof(dp));
dp[0][0][0][0][0] = 1;
for(int i = 1; i <= n; i++) cin >> num[i];
for(int i = 0;i <= num[1]; i++) {
for(int j = 0; j <= num[2] && j <= i; j++) {
for(int k = 0; k <= num[3] && k <= j; k++) {
for(int l = 0; l <= num[4] && l <= k; l++) {
for(int m = 0; m <= num[5] && m <= l; m++) {
if(i + 1 <= num[1]) dp[i + 1][j][k][l][m] += dp[i][j][k][l][m];
if(j + 1 <= num[2] && j + 1 <= i) dp[i][j + 1][k][l][m] += dp[i][j][k][l][m];
if(k + 1 <= num[3] && k + 1 <= j) dp[i][j][k + 1][l][m] += dp[i][j][k][l][m];
if(l + 1 <= num[4] && l + 1 <= k) dp[i][j][k][l + 1][m] += dp[i][j][k][l][m];
if(m + 1 <= num[5] && m + 1 <= l) dp[i][j][k][l][m + 1] += dp[i][j][k][l][m];
}
}
}
}
}
cout << dp[num[1]][num[2]][num[3]][num[4]][num[5]] << endl;
}
return 0;
}
POJ 2279的更多相关文章
- 轮廓线DP:poj 2279 Mr. Young's Picture Permutations
poj 2279 Mr. Young's Picture Permutations \(solution:\) 首先摘取一些关键词:(每行不超过它后面的行)(每排学生安排高度从左到右减少)(学生的高度 ...
- [POJ 2279] Mr. Young's Picture Permutations
[题目链接] http://poj.org/problem?id=2279 [算法] 杨氏矩阵与勾长公式 [代码] #include <algorithm> #include <bi ...
- 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations
Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...
- poj 题目分类(1)
poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...
- POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)
本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...
- poj 动态规划题目列表及总结
此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...
- poj动态规划列表
[1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- POJ 动态规划题目列表
]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...
随机推荐
- gcc, g++ - GNU 工程的 C 和 C++ 编译器 (egcs-1.1.2)
总览 (SYNOPSIS) gcc [ option | filename ]... g++ [ option | filename ]... 警告 (WARNING) 本手册页 内容 摘自 GNU ...
- 【Codeforces #228】Solutions
http://codeforces.com/contest/389 重新把号刷到Div 1 准备ACM?(我这么菜还是玩玩算了……) 官方题解出的很快 Div2 A: 怎么做都行……随便找俩数减就可以 ...
- 用border实现三角形的过程
div{ width:100px; height:100px; background:yellow; border-top: 20px solid red; border-right:20px sol ...
- 用事件队列解决GUI的操作顺序问题(Qt中处理方法)
GUI操作顺序问题引发异常: 有时候我们使用写GUI程序的时候会遇到这样的问题:比如在程序中,建立了一个列表的GUI.这个列表是随着时间不断更新的,而且操作也会读取这个列表GUI的内容. 如果这个程序 ...
- shell脚本,alias别名命令用法。
[root@localhost ~]# alias alias cp='cp -i' alias mv='mv -i' alias rm='rm -i' [root@localhost ~]# [ro ...
- 使用Microsoft Hadoop(一)
To run this program, stage some data in HDFS: 1. create a text file called input.txt that has one in ...
- ViewController的lifecycle和autolayout
- 【树形dp】bzoj1304: [CQOI2009]叶子的染色
又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...
- 蓝牙学习 (8)配对raspberryPi和SensorTag CC2650
在上一篇中,用raspberryPi能够扫描到Ti SensorTag. 但是没有获得更多的数据,并且发现sensor Tag并没有回复scan request. https://blog.csdn. ...
- Shell脚本的条件测试与比较
Shell脚本的条件测试与比较 一.shell脚本的条件测试 通常,在bash的各种条件结构和流程控制结构中都要进行各种测试,然后根据测试结构执行不同的操作,有时也会与if等条件语句相结合,来完成测试 ...