线性DP

本题的正解是杨氏矩阵与钩子定理

但是这道题用DP的思想非常好



但是这样会MLE...

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
unsigned int dp[31][31][31][31][31], n, num[6];
int main() {
while(1) {
cin >> n;
if(!n) break;
memset(num, 0, sizeof(num));
memset(dp, 0, sizeof(dp));
dp[0][0][0][0][0] = 1;
for(int i = 1; i <= n; i++) cin >> num[i];
for(int i = 0;i <= num[1]; i++) {
for(int j = 0; j <= num[2] && j <= i; j++) {
for(int k = 0; k <= num[3] && k <= j; k++) {
for(int l = 0; l <= num[4] && l <= k; l++) {
for(int m = 0; m <= num[5] && m <= l; m++) {
if(i + 1 <= num[1]) dp[i + 1][j][k][l][m] += dp[i][j][k][l][m];
if(j + 1 <= num[2] && j + 1 <= i) dp[i][j + 1][k][l][m] += dp[i][j][k][l][m];
if(k + 1 <= num[3] && k + 1 <= j) dp[i][j][k + 1][l][m] += dp[i][j][k][l][m];
if(l + 1 <= num[4] && l + 1 <= k) dp[i][j][k][l + 1][m] += dp[i][j][k][l][m];
if(m + 1 <= num[5] && m + 1 <= l) dp[i][j][k][l][m + 1] += dp[i][j][k][l][m];
}
}
}
}
}
cout << dp[num[1]][num[2]][num[3]][num[4]][num[5]] << endl;
}
return 0;
}

POJ 2279的更多相关文章

  1. 轮廓线DP:poj 2279 Mr. Young's Picture Permutations

    poj 2279 Mr. Young's Picture Permutations \(solution:\) 首先摘取一些关键词:(每行不超过它后面的行)(每排学生安排高度从左到右减少)(学生的高度 ...

  2. [POJ 2279] Mr. Young's Picture Permutations

    [题目链接] http://poj.org/problem?id=2279 [算法] 杨氏矩阵与勾长公式 [代码] #include <algorithm> #include <bi ...

  3. 【杨氏矩阵+勾长公式】POJ 2279 Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  4. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  5. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  6. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  7. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  8. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  9. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

随机推荐

  1. scrollviews page分页实现方式

    代码 buttonX = 0; buttonW = 50; buttonH = 20; margin = (self.view.width - 5 * buttonW) / 6; CGFloat ym ...

  2. 爬虫学习之pdf读取和存储

    在py3中如需进行pdf文件操作需要加载PDFMiner3K库文件,可通过pip方式或者可以下载源文件方式安装 python3 -m pip install pdfminer3k 下载源文件方式: 1 ...

  3. 【C语言项目】贪吃蛇游戏(下)

    目录 00. 目录 07. 游戏逻辑 7.5 按下ESC键结束游戏 7.6 判断是否撞到墙 7.7 判断是否咬到自己 08. 游戏失败界面设计 8.1 游戏失败界面边框设计 8.2 撞墙失败界面 8. ...

  4. vc生产垃圾清理

    @echo off echo 清除所有obj pch idb pdb ncb opt plg res sbr ilk suo文件,请稍等...... pause del /f /s /q .\*.ob ...

  5. HDU-1217-Arbitrage(SPFA)

    这题和以往的求最短路的题目略微有点不一样,以往求的都是最小的,这题求的是大的,而且还是乘法. 我们求的时候初始化的时候就要进行相反的初始化了,把它们初始化为0,然后比较大的就更新. 因为这题的点少边多 ...

  6. CentOS6.5卸载openJDK和安装Sun JDK

    CentOS6.5卸载openJDK和安装Sun JDK 最近业务需要,新安装了CentOS6.5系统,在配置tomcat的时候,总是报错找不到jdk中的java.研究了半天,发现应该是openJDK ...

  7. shell脚本中使用echo显示带颜色的内容

    shell脚本中使用echo显示带颜色的内容,需要使用参数-e 格式如下: echo -e "\033[字背景颜色;文字颜色m字符串\033[0m" 例如: echo -e &qu ...

  8. 【Charles】使用Charles时,抓不到包的情况。

    有可能是因为浏览器的代理权限给了其他插件,需要停用该插件,重启浏览器,重新进行访问就可以看到Charles的抓包信息了.

  9. 【linux】【网络安全】linux中怎样关闭ICMP回应功能

    引用自:http://blog.csdn.net/qq844352155/article/details/49700121       linux中怎样关闭ICMP回应功能   输入:   echo ...

  10. python--网络编程之socket

    一 . 网络编程 CS架构 客户端服务端架构 服务端:提供服务的 客户端:享受服务的 BS架构:浏览器和服务端 网络通信流程: 集线器:将所有连接上它的电脑全部联通起来 交换机:升级版的集线器 网卡: ...