拓展欧几里得:

当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d ;

d = gcd ( a , b ) = gcd ( b , a mod b );

设:

x1 * a + y1 * b = d ;        ①

x2 * b + y2 * ( a mod b ) = d ;   ②

因为 a mod b = a - ( a / b )* b;  ③(除法为整除)

将③代入①整理得:

y2 * a + ( x2 - ( a / b ) * y2 ) * b = d; ④

由①和④整理得:

x1 = y2 ;

y1 = x2 - ( a / b ) * y2;

将此结论代入递归函数既得。

#include<stdio.h>
#define ll long long void gcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
gcd(a,b,d,x,y);
printf("%lld*%lld+%lld*%lld=%lld\n",a,x,b,y,d);
}
return ;
}

拓展欧几里得求逆元:

当 a 与 b 互素时有 gcd ( a , b ) = 1 ;

即得: a * x + b * y = 1;

a * x ≡ 1 ( mod b );

由于 a 与 b 互素,同余式两边可以同除 a ,得:

1 * x ≡ 1 / a (mod b);

因此 x 是 a mod b 的逆元;

#include<stdio.h>
#define ll long long ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=;
y=;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
}
return ;
}

MOD为素数时可以用下面2种方法求逆元

void get_inv(){
inv[]=;
for(int i=;i<mod+;i++)
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}

乘法逆元

费马小定理:当MOD是素数时,a^(MOD-1)≡1(mod MOD)。(费马小定理是欧拉定理的特殊情况)

那么逆元x=a^(MOD-2)%MOD。可以用快速幂直接求出。

Pow(a,MOD-,MOD)%MOD

http://www.cnblogs.com/pk28/p/5718855.html

扩展欧几里得模板&逆元求法的更多相关文章

  1. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  2. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  3. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  4. Uva12169 扩展欧几里得模板

    Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...

  5. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  6. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  7. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  8. 51nod1256 乘法逆元【扩展欧几里得】

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...

  9. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

随机推荐

  1. 大项目之网上书城(七)——书页面以及加入购物车Servlet

    目录 大项目之网上书城(七)--书页面以及加入购物车Servlet 主要改动 1.shu.jsp 代码 效果图 2.shu.js 代码 3.index.jsp 代码 效果图 4.FindBookByC ...

  2. NOIP2016玩具迷题

    题目大意就不说了,反正水水就过了. 主要在于找01关系. 代码: #include<cstdio> int n,m; struct node { ]; int f; }a[]; int m ...

  3. assert.ok()详解

    assert.ok(value[, message]) 测试 value 是否为真值.它等同于 assert.equal(!!value, true, message). 如果 value 不是真值, ...

  4. PHP:现有图片验证码类

    文章来源:http://www.cnblogs.com/hello-tl/p/7593022.html <?php class TL_Captcha_img{ private $image; / ...

  5. Django之模板引擎(母版)

    Django之模板引擎(母版) 母版:存放所有页面的基本信息,基本样式 子班:继承母版 自定义当前页面私有的样式信息 母版的样式: {% block xxx(名称) %} xxxxxxx(数据) {% ...

  6. 有趣的鼠标悬浮模糊效果总结---(filter,渐变文字)

    绘制渐变背景图 第一种:大神的想法,摘抄 background-image: -webkit-linear-gradient(left, blue, red 25%, blue 50%, red 75 ...

  7. C51 原创电子琴 (蜂鸣器/计时器/中断/矩阵按键)

    需求分析 用C51的16个矩阵按键当作两个八度的琴键 按下时发出相应音调的声音,静态数码管显示相应音符的数字. 为了解锁更多曲目,两个多的琴键设计成#4,显示时加上小数点 下图分别为1和#4的显示,其 ...

  8. 前端开发:JavaScript---ECMAScript

    JavaScript:JavaScript是一种web前端的描述语言,也是一种基于对象(object)和事件驱动(Event Driven)的脚本语言.它运行在客户端从而减轻服务器的负担. js是一种 ...

  9. 2018/3/3 解析ThreadLocal源码

    今天听到一个老哥说道ThreadLocal在源码设计上面的一些好处,于是决定把ThreadLocal源码彻底分析一下. 首先,我们来看下set方法 可以看到,这个方法里,先获得了当前线程,之后将当前线 ...

  10. 一个Java开发的Python之路----------------(一)

    最近开始学习Python了,主要是因为现在在给海航通过JAVA写CMDB运维管理平台,我就是作为唯一一个坐在运维屋里的开发,又当爹,又当妈,前端,后台,测试,设计,需求, 发布,统统一把抓!!在Git ...