拓展欧几里得:

当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d ;

d = gcd ( a , b ) = gcd ( b , a mod b );

设:

x1 * a + y1 * b = d ;        ①

x2 * b + y2 * ( a mod b ) = d ;   ②

因为 a mod b = a - ( a / b )* b;  ③(除法为整除)

将③代入①整理得:

y2 * a + ( x2 - ( a / b ) * y2 ) * b = d; ④

由①和④整理得:

x1 = y2 ;

y1 = x2 - ( a / b ) * y2;

将此结论代入递归函数既得。

#include<stdio.h>
#define ll long long void gcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
gcd(a,b,d,x,y);
printf("%lld*%lld+%lld*%lld=%lld\n",a,x,b,y,d);
}
return ;
}

拓展欧几里得求逆元:

当 a 与 b 互素时有 gcd ( a , b ) = 1 ;

即得: a * x + b * y = 1;

a * x ≡ 1 ( mod b );

由于 a 与 b 互素,同余式两边可以同除 a ,得:

1 * x ≡ 1 / a (mod b);

因此 x 是 a mod b 的逆元;

#include<stdio.h>
#define ll long long ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=;
y=;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
}
return ;
}

MOD为素数时可以用下面2种方法求逆元

void get_inv(){
inv[]=;
for(int i=;i<mod+;i++)
inv[i]=inv[mod%i]*(mod-mod/i)%mod;
}

乘法逆元

费马小定理:当MOD是素数时,a^(MOD-1)≡1(mod MOD)。(费马小定理是欧拉定理的特殊情况)

那么逆元x=a^(MOD-2)%MOD。可以用快速幂直接求出。

Pow(a,MOD-,MOD)%MOD

http://www.cnblogs.com/pk28/p/5718855.html

扩展欧几里得模板&逆元求法的更多相关文章

  1. [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)

    最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...

  2. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  3. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  4. Uva12169 扩展欧几里得模板

    Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...

  5. 洛谷——P2054 [AHOI2005]洗牌(扩展欧几里得,逆元)

    P2054 [AHOI2005]洗牌 扩展欧拉定理求逆元 $1 2 3 4 5 6$$4 1 5 2 6 3$$2 4 6 1 3 5$$1 2 3 4 5 6$ 手推一下样例,你就会发现是有规律的: ...

  6. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  7. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  8. 51nod1256 乘法逆元【扩展欧几里得】

    给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用 ...

  9. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

随机推荐

  1. HDOJ 1846 Brave Game - 博弈入门

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1846 经典基础博弈,首先面对(m+1)的人一定会输,依次往后推即可: #include<iost ...

  2. 全国高校绿色计算大赛 预赛第二阶段(Python)

    第1关统计分数的麻烦 class Task: def get_lost_scores(self, scores): s = "" index = [1 for i in range ...

  3. Linux中搭建FTP服务器

    FTP工作原理 (1)FTP使用端口 [root@localhost ~]# cat /etc/services | grep ftp ftp-data 20/tcp #数据链路:端口20 ftp 2 ...

  4. Python数据类型之数字类型

    整数 在Python中,整数可以执行 加(+)减(-)乘(*)除(/) 运算. 1 + 2 3 - 2 2 * 3 3 / 2 # 1.5 在控制台,Python直接返回运算结果. Python中也可 ...

  5. Wireshark抓包工具的简单使用1(界面介绍)

    Wireshark安装完成后,就可以打开,具体运行界面如下 一.菜单——用于开始操作 File ——包括打开.合并捕捉文件,save/保存,Print/打印,Export/导出捕捉文件的全部或部分.以 ...

  6. Flask基础(3):session、flash、特殊装饰器、蓝图、路由正则匹配、上下文管理 & flask-session

    Session: Flask 默认将 session 以加密的形式放到了浏览器的 cookie 中 Flask 的 session 就是一个字典,字典有什么方法 session 就有什么方法 flas ...

  7. Codeforces704C. Black Widow

    n<=1e5个值v,分别由<=1e5的m个变量中的1<=ki<=2个布尔变量xj(或某个变量取反)或起来组成,而所有的v异或起来为1,一个x不会在输入数据中出现超过2次,包括他 ...

  8. 【IntelliJ】IntelliJ IDEA的安装破解及使用

    结合两位大牛CV的,写的很全面,仅供自己使用 转载地:http://www.jianshu.com/p/ad3830095fb3 https://www.cnblogs.com/kangjianwei ...

  9. AOJ 0118 Property Distribution (DFS)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=46522 简单DFS,题目翻译参考  http://blog.csdn.net ...

  10. [bzoj5343][Ctsc2018]混合果汁_二分答案_主席树

    混合果汁 bzoj-5343 Ctsc-2018 题目大意:给定$n$中果汁,第$i$种果汁的美味度为$d_i$,每升价格为$p_i$,每次最多添加$l_i$升.现在要求用这$n$中果汁调配出$m$杯 ...