题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142

前几天学了扩展卢卡斯定理,今天来磕模板!

这道题式子挺好推的(连我都自己推出来了) ,总之就是在 n 个里取 w[1] 个,剩下的里面再取 w[2] 个,再在剩下的里面取...

这里的模数 P 一看就不是质数啊!大组合数对合数取模,就要用到扩展卢卡斯定理了;

关于扩展卢卡斯定理,可以看这篇博客:https://blog.csdn.net/clove_unique/article/details/54571216

然后模仿这篇博客写的(感觉挺清晰的):https://www.cnblogs.com/elpsycongroo/p/7620197.html

扩展卢卡斯定理也没有想象中的那么难写嘛!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll mod,n,m,w[],sum,p[maxn],pk[maxn],cnt,r[maxn],x,y;
void divide(ll n)
{
for(ll i=;i*i<=n;i++)
if(n%i==)
{
p[++cnt]=i; pk[cnt]=;
while(n%i==)pk[cnt]*=i,n/=i;
}
if(n>)p[++cnt]=n,pk[cnt]=n;
}
ll pw(ll a,ll b,ll pk)
{
ll ret=;
for(;b;b>>=1ll,a=(a*a)%pk)
if(b&)ret=(ret*a)%pk;
return ret;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=; y=; return;}
exgcd(b,a%b,x,y);
ll t=x; x=y; y=(t-a/b*y)%mod;
}
ll inv(ll n,ll pk)
{
exgcd(n,pk,x,y); return (x%pk+pk)%pk;
}
ll fac(ll n,ll p,ll pk)// n! mod pk=p^k 且去掉 p
{
if(!n)return ;
ll ret=;
for(int i=;i<=pk;i++) if(i%p) ret=(ret*i)%pk;//一个循环节
ret=pw(ret,n/pk,pk);
for(int i=;i<=n%pk;i++) if(i%p) ret=(ret*i)%pk;
return (ret*fac(n/p,p,pk))%pk;//递归求剩余部分
}
ll exlucas(ll n,ll m,ll p,ll pk)// C(n,m) mod pk=p^k
{
if(n<m)return ;
ll a=fac(n,p,pk),b=fac(m,p,pk),c=fac(n-m,p,pk);
ll k=;//p的指数
for(ll i=n;i;i/=p)k+=i/p;
for(ll i=m;i;i/=p)k-=i/p;
for(ll i=n-m;i;i/=p)k-=i/p;
return (((a*inv(b,pk))%pk*inv(c,pk))%pk*pw(p,k,pk))%pk;//a*p^k/(b*c)
}
ll CRT()//合并模数
{
ll M=,ret=;
for(int i=;i<=cnt;i++)M*=pk[i];//pk而不是p !!!
for(int i=;i<=cnt;i++)
{
ll w=M/pk[i];
ret=(ret+w*inv(w,pk[i])*r[i])%M;
}
return (ret%M+M)%M;//
}
ll exc(ll n,ll m)// C(n,m)
{
if(n<m)return ;
for(int i=;i<=cnt;i++)
r[i]=exlucas(n,m,p[i],pk[i]);
return CRT();
}
int main()
{
scanf("%lld%lld%lld",&mod,&n,&m);
for(int i=;i<=m;i++)scanf("%lld",&w[i]),sum+=w[i];
if(sum>n){printf("Impossible\n"); return ;}
divide(mod);
ll ans=;
for(int i=;i<=m;i++)
{
ans=(ans*exc(n,w[i]))%mod;
n-=w[i];
}
printf("%lld\n",ans);
return ;
}

bzoj2142 礼物——扩展卢卡斯定理的更多相关文章

  1. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  2. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  3. 卢卡斯定理&扩展卢卡斯定理

    卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...

  4. 【知识总结】扩展卢卡斯定理(exLucas)

    扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...

  5. LG4720 【模板】扩展卢卡斯定理

    扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...

  6. 【学习笔记】扩展卢卡斯定理 exLucas

    引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...

  7. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  8. Luogu P2183 [国家集训队]礼物 扩展卢卡斯+组合数

    好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P ...

  9. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

随机推荐

  1. 04JavaScript程序语句

    JavaScript程序语句 2.6程序控制流程 2.6.1选择结构 if <逻辑表达式> 语句 else 语句 if <逻辑表达式> { 语句组 } else { 语句组} ...

  2. @EnableConfigurationProperties

    参考:https://www.jianshu.com/p/7f54da1cb2eb 使用 @ConfigurationProperties 注解的类生效. 如果一个配置类只配置@Configurati ...

  3. How To:分析ORACLE监听日志中的IP信息

    有时候需要分析出ORACLE日志监听中的IP信息,分享一个组合命令,Linux的shell下运行正常. grep "HOST=.*establish.*\* 0" listener ...

  4. CentOS7安装Nginx及其相关

    一.安装所需环境 gcc 安装 安装 nginx 需要先将官网下载的源码进行编译,编译依赖 gcc 环境,如果没有 gcc 环境,则需要安装. yum install gcc-c++ PCRE pcr ...

  5. 版本优化-test

    版本优化 标签(空格分隔): 测试 需求经手人太多,直接提bug,开发不乐意,跟Leader确认不靠谱,跟PM确认,不熟悉流程,跟第三方PM确认靠谱了,结果被开发三言两语,变成了不改bug 而改需求 ...

  6. np.tile(), np.repeat() 和 tf.tile()

    以上三个函数,主要区别在于能够拓展维度上和重复方式: np.tile() 能够拓展维度,并且整体重复: a = np.array([0,1,2]) np.tile(a,(2,2)) # out # a ...

  7. Python数据分析与展示(1)-数据分析之表示(2)-NumPy数据存取与函数

    NumPy数据存取与函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据. 将数据写入CSV文件 np ...

  8. PAT 1131 Subway Map

    In the big cities, the subway systems always look so complex to the visitors. To give you some sense ...

  9. 49. spring boot日志升级篇—理论【从零开始学Spring Boot】

    我们之前在其中的一篇文章介绍过如何在spring boot中使用日志记录SLF4J. Spring Boot在所有内部日志中使用Commons Logging,但是默认配置也提供了对常用日志的支持,如 ...

  10. hammerjs & Swiper & touch & gesture

    hammerjs https://hammerjs.github.io/getting-started/ http://hammerjs.github.io/recognizer-swipe/ Swi ...