bzoj2142 礼物——扩展卢卡斯定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142
前几天学了扩展卢卡斯定理,今天来磕模板!
这道题式子挺好推的(连我都自己推出来了) ,总之就是在 n 个里取 w[1] 个,剩下的里面再取 w[2] 个,再在剩下的里面取...
这里的模数 P 一看就不是质数啊!大组合数对合数取模,就要用到扩展卢卡斯定理了;
关于扩展卢卡斯定理,可以看这篇博客:https://blog.csdn.net/clove_unique/article/details/54571216
然后模仿这篇博客写的(感觉挺清晰的):https://www.cnblogs.com/elpsycongroo/p/7620197.html
扩展卢卡斯定理也没有想象中的那么难写嘛!
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const maxn=1e5+;
ll mod,n,m,w[],sum,p[maxn],pk[maxn],cnt,r[maxn],x,y;
void divide(ll n)
{
for(ll i=;i*i<=n;i++)
if(n%i==)
{
p[++cnt]=i; pk[cnt]=;
while(n%i==)pk[cnt]*=i,n/=i;
}
if(n>)p[++cnt]=n,pk[cnt]=n;
}
ll pw(ll a,ll b,ll pk)
{
ll ret=;
for(;b;b>>=1ll,a=(a*a)%pk)
if(b&)ret=(ret*a)%pk;
return ret;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=; y=; return;}
exgcd(b,a%b,x,y);
ll t=x; x=y; y=(t-a/b*y)%mod;
}
ll inv(ll n,ll pk)
{
exgcd(n,pk,x,y); return (x%pk+pk)%pk;
}
ll fac(ll n,ll p,ll pk)// n! mod pk=p^k 且去掉 p
{
if(!n)return ;
ll ret=;
for(int i=;i<=pk;i++) if(i%p) ret=(ret*i)%pk;//一个循环节
ret=pw(ret,n/pk,pk);
for(int i=;i<=n%pk;i++) if(i%p) ret=(ret*i)%pk;
return (ret*fac(n/p,p,pk))%pk;//递归求剩余部分
}
ll exlucas(ll n,ll m,ll p,ll pk)// C(n,m) mod pk=p^k
{
if(n<m)return ;
ll a=fac(n,p,pk),b=fac(m,p,pk),c=fac(n-m,p,pk);
ll k=;//p的指数
for(ll i=n;i;i/=p)k+=i/p;
for(ll i=m;i;i/=p)k-=i/p;
for(ll i=n-m;i;i/=p)k-=i/p;
return (((a*inv(b,pk))%pk*inv(c,pk))%pk*pw(p,k,pk))%pk;//a*p^k/(b*c)
}
ll CRT()//合并模数
{
ll M=,ret=;
for(int i=;i<=cnt;i++)M*=pk[i];//pk而不是p !!!
for(int i=;i<=cnt;i++)
{
ll w=M/pk[i];
ret=(ret+w*inv(w,pk[i])*r[i])%M;
}
return (ret%M+M)%M;//
}
ll exc(ll n,ll m)// C(n,m)
{
if(n<m)return ;
for(int i=;i<=cnt;i++)
r[i]=exlucas(n,m,p[i],pk[i]);
return CRT();
}
int main()
{
scanf("%lld%lld%lld",&mod,&n,&m);
for(int i=;i<=m;i++)scanf("%lld",&w[i]),sum+=w[i];
if(sum>n){printf("Impossible\n"); return ;}
divide(mod);
ll ans=;
for(int i=;i<=m;i++)
{
ans=(ans*exc(n,w[i]))%mod;
n-=w[i];
}
printf("%lld\n",ans);
return ;
}
bzoj2142 礼物——扩展卢卡斯定理的更多相关文章
- BZOJ2142礼物——扩展卢卡斯
题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- 卢卡斯定理&扩展卢卡斯定理
卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...
- 【知识总结】扩展卢卡斯定理(exLucas)
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...
- LG4720 【模板】扩展卢卡斯定理
扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...
- 【学习笔记】扩展卢卡斯定理 exLucas
引子 求 \[C_n^m\ \text{mod}\ p \] 不保证 \(p\) 是质数. 正文 对于传统的 Lucas 定理,必须要求 \(p\) 是质数才行.若 \(p\) 不一定是质数,则需要扩 ...
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
- Luogu P2183 [国家集训队]礼物 扩展卢卡斯+组合数
好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P ...
- [BZOJ2142]礼物(扩展Lucas)
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2286 Solved: 1009[Submit][Status][Discuss] ...
随机推荐
- vue基础---事件处理
(1)事件监听 v-on 指令监听 DOM 事件,并在触发时运行JS代码 <div class="event_area"> {{message}} <button ...
- 第二节:SQLServer导出-重置sa密码-常用sql语句
1.SQLServer导出: 点击要导出数据库----->右键(任务)----->生成脚本----->下一步----->下一步(高级)要编写脚本的数据类型---选择架构和数据 ...
- UVA - 820 Internet Bandwidth(最大流模板题)
题目: 思路: 直接套最大流的模板就OK了,注意一下输出的格式. 代码: #include <bits/stdc++.h> #define inf 0x3f3f3f3f #define M ...
- HDU 5217 Brackets
[题意概述] 给出一个有左括号和右括号的序列,左边的左括号和右边的右括号可以合并.现在要求你维护这个序列,支持两种操作: 1,翻转某个位置的括号: 2,查询区间[L,R]合并后第k个括号在原序列中的位 ...
- 3.3.3 char 类型
char类型原本用于表示单个字符.不过,现在情况已经有所变化.如今,有些Unicode字符可以用一个char值描述,另外一些Unicode字符则需要两个 char 值. char类 ...
- Wow! Such Sequence! (线段树) hdu4893
http://acm.hdu.edu.cn/showproblem.php?pid=4893 先贴上一份还没过的代码,不知道拿出错了 1 // by caonima ; ; ],col[MAX< ...
- 转载 - Python里面关于 模块 和 包 和 __init__.py 的一些事
出处:http://www.cnblogs.com/tqsummer/archive/2011/01/24/1943273.html python中的Module是比较重要的概念.常见的情况是,事先写 ...
- Promise 异步编程
//1.解决异步回调问题 //1.1 如何同步异步请求 //如果几个异步操作之间并没有前后顺序之分,但需要等多个异步操作都完成后才能执行后续的任务,无法实现并行节约时间 const fs = requ ...
- sharepoint第三方程序认证尝试失败记录
本来想用REST服务开发第三方的插件的,下面的文章说明REST API是非常好用的 https://technet.microsoft.com/zh-cn/library/jj164022(v=off ...
- 将完整的Maven远程存储库下载到本地存储库(别试了,不太可取)
别试了,这种方式不太可取. 要解决可以有如下思路: 1.做成镜像站点,有如下命令: wget -m http://site.to.mirror.com #-m代表“镜子”. rsync repo1.m ...