威尔逊定理

在初等数论中,威尔逊定理给出了判定一个自然数是否为素数的充分必要条件。即:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ),但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。

充分性

如果“p”不是素数,那么它的正因数必然包含在整数1, 2, 3, 4, … ,p− 1 中,因此gcd((p− 1)!,p) > 1,所以我们不可能得到(p− 1)! ≡ −1 (modp)。
 
必要性
 
若p是素数,取集合 A={1,2,3,...p -1}; 则A 构成模p乘法的缩系,即任意i∈A ,存在j∈A,使得:
( i j ) ≡ 1 ( mod p )那么A中的元素是不是恰好两两配对呢? 不一定,但只需考虑这种情况
x^2 ≡ 1 ( mod p )
解得: x ≡ 1 ( mod p ) 或 x ≡ p - 1 ( mod p )
其余两两配对;
故而
( p - 1 )! ≡ 1﹡( p -1 ) ≡ -1 ( mod p )
ps:
(我试了一下它只能判断n<=35......比暴力都弱......轻易不要用,理解就行啦)
代码如下:
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath> using namespace std; long long int f(int p)
{
if(p==)
return ;
else return p*f(p-);
}
int main()
{
int n;
scanf("%d",&n);
long long int ans=f(n-);
if(ans%n==n-)
printf("YES");
else
printf("NO");
return ;
}

威尔逊定理x的更多相关文章

  1. hdu5391 Zball in Tina Town(威尔逊定理)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Zball in Tina Town Time Limit: 3000/1500 ...

  2. HDU2973(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  4. hdu2973 YAPTCHA【威尔逊定理】

    <题目链接> 题目大意: The task that is presented to anyone visiting the start page of the math departme ...

  5. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  6. hdu2973-YAPTCHA-(欧拉筛+威尔逊定理+前缀和)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  8. 威尔逊定理--HDU2973

    参考博客 HDU-2973 题目 Problem Description The math department has been having problems lately. Due to imm ...

  9. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  10. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

随机推荐

  1. 使用Duilib开发Windows软件(3)——控件的样式

    摘抄下 https://www.cnblogs.com/Alberl/p/3344936.html 的一段代码 <?xml version="1.0" encoding=&q ...

  2. element-ui 合并单元格的方法

    arraySpanMethod({ row, column, rowIndex, columnIndex }) { // 只合并区域位置          //columnIndex 横的第一列    ...

  3. JSP JSONArray使用遇坑!添加以下6个jar包

    1.JAR包简介 要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包: commons-lang.jar commons-beanutils.jar commons ...

  4. dll安装到GAC以及引用的方法【转】

    一 首先    程序集(dll) 安装到 GAC 中的方法 所谓的GAC,就是全局程序集缓存(Global Assembly Cache). 针对一些类库项目或用户控件项目在程序开发完成后,有时需要将 ...

  5. freemarker循环、下标及判断

    一.freemarker中list循环使用非常频繁,下面介绍lfreemarker中list简单的用法 1.在freemarker中遍历list数组使用list指令:<#list sequenc ...

  6. react中key值的理解

    react利用key来识别组件,它是一种身份标识标识,相同的key react认为是同一个组件,这样后续相同的key对应组件都不会被创建有了key属性后,就可以与组件建立了一种对应关系,react根据 ...

  7. [LeetCode] 219. Contains Duplicate II ☆(存在重复元素2)

    每天一算:Contains Duplicate II 描述 给出1个整形数组nums和1个整数k,是否存在索引i和j,使得nums[i] == nums[j] 且i和j之间的差不超过k Example ...

  8. 【Day5】1.Request对象之Header伪装策略

    import urllib.request as ur import user_agent request = ur.Request( url='https://edu.csdn.net/', hea ...

  9. 配置tmux在机器重启后自动恢复tmux工作现场,告别重启恐惧症

    1. 问题出现的背景 通过ssh远程登录服务器在上面工作,有时候很有可能由于网络断开而导致ssh链接断开,或者下班后想继续在家登录到服务器继续工作.这些情况都需要服务器保持我们的工作环境,比如,vim ...

  10. 单元测试框架之unittest(四)

    一.摘要 假设我们有一组测试方法差别非常小,比如仅仅是所需要的参数有少许变化时,我们的自动化测试如何进行?unittest框架为这种场景提供了一种方式,它允许我们用subTest()上下文管理器在一个 ...