威尔逊定理

在初等数论中,威尔逊定理给出了判定一个自然数是否为素数的充分必要条件。即:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ),但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。

充分性

如果“p”不是素数,那么它的正因数必然包含在整数1, 2, 3, 4, … ,p− 1 中,因此gcd((p− 1)!,p) > 1,所以我们不可能得到(p− 1)! ≡ −1 (modp)。
 
必要性
 
若p是素数,取集合 A={1,2,3,...p -1}; 则A 构成模p乘法的缩系,即任意i∈A ,存在j∈A,使得:
( i j ) ≡ 1 ( mod p )那么A中的元素是不是恰好两两配对呢? 不一定,但只需考虑这种情况
x^2 ≡ 1 ( mod p )
解得: x ≡ 1 ( mod p ) 或 x ≡ p - 1 ( mod p )
其余两两配对;
故而
( p - 1 )! ≡ 1﹡( p -1 ) ≡ -1 ( mod p )
ps:
(我试了一下它只能判断n<=35......比暴力都弱......轻易不要用,理解就行啦)
代码如下:
 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath> using namespace std; long long int f(int p)
{
if(p==)
return ;
else return p*f(p-);
}
int main()
{
int n;
scanf("%d",&n);
long long int ans=f(n-);
if(ans%n==n-)
printf("YES");
else
printf("NO");
return ;
}

威尔逊定理x的更多相关文章

  1. hdu5391 Zball in Tina Town(威尔逊定理)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Zball in Tina Town Time Limit: 3000/1500 ...

  2. HDU2973(威尔逊定理)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  4. hdu2973 YAPTCHA【威尔逊定理】

    <题目链接> 题目大意: The task that is presented to anyone visiting the start page of the math departme ...

  5. HDU 5391 Zball in Tina Town【威尔逊定理】

    <题目链接> Zball in Tina Town Problem Description Tina Town is a friendly place. People there care ...

  6. hdu2973-YAPTCHA-(欧拉筛+威尔逊定理+前缀和)

    YAPTCHA Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. YAPTCHA UVALive - 4382(换元+威尔逊定理)

    题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...

  8. 威尔逊定理--HDU2973

    参考博客 HDU-2973 题目 Problem Description The math department has been having problems lately. Due to imm ...

  9. HDU - 2973:YAPTCHA (威尔逊定理)

    The math department has been having problems lately. Due to immense amount of unsolicited automated ...

  10. HDU6608-Fansblog(Miller_Rabbin素数判定,威尔逊定理应用,乘法逆元)

    Problem Description Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people ...

随机推荐

  1. java中单双引号的区别

    单引号: 单引号包括的是单个字符,表示的是char类型.例如: char  a='1' 双引号: 双引号可以包括0个或者多个字符,表示的是String类型. 例如: String s="ab ...

  2. win10系统ping另一台电脑上虚拟机的IP

    刚刚因为虚拟机与主机没法互相ping通的事情,奋战到将近凌晨一点.现在把这个过程总结一下,以方便后加入该行业的广大IT精英. VMWare提供了三种工作模式:bridged(桥接模式).NAT(网络地 ...

  3. Binary Table CodeForces - 662C (FWT)

    大意: 给定$nm$大小的$01$矩阵, $1\le n\le 20,1\le m\le 1e5$, 可以任选行列翻转, 求最终$1$总数最少为多少. 显然有$O(m2^n)$的暴力算法 也就是枚举翻 ...

  4. Tree Generator™ CodeForces - 1149C (线段树,括号序列)

    大意: 给定括号序列, 每次询问交换两个括号, 求括号树的直径. 用[ZJOI2007]捉迷藏的方法维护即可. #include <iostream> #include <algor ...

  5. java.lang.ClassCastException: com.sun.proxy.$Proxy4 cannot be cast

    解决方案 在配置文件中配置proxy-target-class="true" <aop:aspectj-autoproxy proxy-target-class=" ...

  6. Shell脚本基础学习

    Shell脚本基础学习 当你在类Unix机器上编程时, 或者参与大型项目如k8s等, 某些框架和软件的安装都是使用shell脚本写的. 学会基本的shell脚本使用, 让你走上人生巅峰, 才怪. 学会 ...

  7. (七)Action之ActionContext(OGNL表达式的使用)

    一.ActionContext的重要性 struts中的数据都存放在ActionContext里,所以这部分是Action中的核心. ActionContext又称广义值栈,既然有广义值栈就有侠义值栈 ...

  8. Google Drive ubuntu

    Google尚未发布用于从Ubuntu访问其drive的官方Linux客户端.然开源社区却业已开发完毕非官方之软件包‘grive-tools’. grive乃是Google Drive(在线存储服务) ...

  9. kong命令(四)upstream

    介绍 upstream 就是一个虚拟的服务.可用于配置多个target目标服务时实现负载均衡的效果. 注意:service的host指的就是upstream的name. 同时upstream提供了一个 ...

  10. 微信小程序tabBar与redirectTo 或navigateTo冲突

    微信小程序tabBar与redirectTo 或navigateTo冲突 tabBar设置的pagePath无法再次被redirectTo或navigateTo引用 导致跳转失败,更改为swithTa ...