BZOJ 1420: Discrete Root (原根+BSGS)
题意
已知kkk, aaa, ppp. 求 xk≡a (mod p)x^k\equiv a\ (mod\ p)xk≡a (mod p) 的所有根. 根的范围[0,p−1][0,p-1][0,p−1]. ppp为质数
分析
因为ppp是质数,那么一定有原根.设为ggg.
原根的性质如下:
- 对于[1,p−1][1,p-1][1,p−1]的所有iii,一定存在x∈[1,p−1]x\in[1,p-1]x∈[1,p−1]使得gx≡i (mod p)g^x\equiv i\ (mod\ p)gx≡i (mod p). 此时设xxx为I(i)I(i)I(i).
1.1.1.那么当aaa等于000
- 只有一个根就是000
2.2.2.当a∈[1,p−1]a\in[1,p-1]a∈[1,p−1]
- 画画柿子xk≡a (mod p)(gI(x))k≡a (mod p)(gk)I(x)≡a (mod p)\begin{aligned}x^k&\equiv a\ (mod\ p)\\(g^{I(x)})^k&\equiv a\ (mod\ p)\\(g^{k})^{I(x)}&\equiv a\ (mod\ p)\end{aligned}xk(gI(x))k(gk)I(x)≡a (mod p)≡a (mod p)≡a (mod p)
我们知道gkg^kgk,知道aaa,知道ppp.直接BSGSBSGSBSGS就行了.
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int g, prime[100], cnt;
inline int qpow(int a, int b, int c) {
int re = 1;
while(b) {
if(b&1) re = 1ll * re * a % c;
a = 1ll * a * a % c; b >>= 1;
}
return re;
}
inline void Factor(int N) {
int tmp = N;
for(int i = 2; i*i <= N; ++i)
if(tmp % i == 0) {
prime[++cnt] = i;
while(tmp % i == 0) tmp /= i;
}
if(tmp > 1) prime[++cnt] = tmp;
}
inline int Get_g(int p) { //找原根
Factor(p-1);
for(int g = 2; ; ++g) {
bool flg = true;
for(int i = 1; i <= cnt; ++i)
if(qpow(g, (p-1)/prime[i], p) == 1)
{ flg = 0; break; }
if(flg) return g;
}
}
map<int, int>myhash;
vector<int>ans;
inline void Baby_Step_Giant_Step(int a, int b, int p) {
if(b == 1) ans.push_back(0);
myhash.clear();
int m = int(sqrt(p) + 1);
LL base = b;
for(int i = 0; i < m; ++i) {
myhash[base] = i;
base = 1ll * base * a % p;
}
base = qpow(a, m, p);
LL tmp = 1;
for(int i = 1; i <= m+1; ++i) {
tmp = 1ll * tmp * base % p;
if(myhash.count(tmp))
ans.push_back(i*m - myhash[tmp]);
}
}
int main() {
int p, k, a, g;
scanf("%d%d%d", &p, &k, &a);
if(!a) return puts("1"), puts("0"), 0;
//(g^I(x))^k = a (mod p)
//(g^k)^I(x) = a
Baby_Step_Giant_Step(qpow(g = Get_g(p), k, p), a, p);
for(int i = 0, siz = ans.size(); i < siz; ++i)
ans[i] = qpow(g, ans[i], p);
sort(ans.begin(), ans.end());
int siz = ans.size();
siz = unique(ans.begin(), ans.end()) - ans.begin();
printf("%d\n", siz);
for(int i = 0; i < siz; ++i)
printf("%d\n", ans[i]);
}
BZOJ 1420: Discrete Root (原根+BSGS)的更多相关文章
- bzoj 1420 Discrete Root - 原根 - exgcd - BSGS
题目传送门 戳我来传送 题目大意 给定$k, p, a$,求$x^{k}\equiv a \pmod{p}$在模$p$意义下的所有根. 考虑模$p$下的某个原根$g$. 那么$x = g^{ind_ ...
- BZOJ 1420 Discrete Root
思路:数学大汇总 提交:\(3\)次 错因:有一个\(j\)写成\(i\) 题解: 求:\(x^k \equiv a \mod p\) 我们先转化一下:求出\(p\)的原根\(g\) 然后我们用\(B ...
- BZOJ 3239 Discrete Logging(BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3239 [题目大意] 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数 [题解 ...
- BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)
我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...
- 【BZOJ 1319】 Sgu261Discrete Rootsv (原根+BSGS+EXGCD)
1319: Sgu261Discrete Roots Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 389 Solved: 172 Descriptio ...
- bzoj 3239: Discrete Logging && 2480: Spoj3105 Mod【BSGS】
都是BSGS的板子题 此时 \( 0 \leq x \leq p-1 \) 设 \( m=\left \lceil \sqrt{p} \right \rceil ,x=i*m-j \)这里-的作用是避 ...
- bzoj1420/1319 Discrete Root
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1420 http://www.lydsy.com/JudgeOnline/problem.ph ...
- POJ2417 Discrete Logging【BSGS】
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5577 Accepted: 2494 ...
- 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...
随机推荐
- airflow_failover启动scheduler
参考: https://github.com/teamclairvoyant/airflow-scheduler-failover-controller 1.stop failover2.stop s ...
- 【转帖】.NET的一点历史故事:Novell的崩溃和Xamarin的重生
.NET的一点历史故事:Novell的崩溃和Xamarin的重生 https://blog.csdn.net/sD7O95O/article/details/78096502 学习安装 mono 时了 ...
- 获取web项目的绝对路径的方法总结
一.用Jsp获取 1.获取文件的绝对路径 String file="文件";(例如:data.mdb) String path=application.getRealPath(fi ...
- SQLite进阶-11.Join
目录 JOIN 交叉连接 - CROSS JOIN 内连接 - INNER JOIN 外连接 - OUTER JOIN JOIN JOIN 子句用于结合两个或者多个数据表的数据,基于这些表之间的共同字 ...
- Java实现二叉树地遍历、求深度和叶子结点的个数
一.分析 二叉树是n个结点所构成的集合,它或为空树,或为非空树.对于非空树,它有且仅有一个根结点,且除根结点以外的其余结点分为两个互不相交的子集,分别称为左子树和右子树,它们本身又都是二叉树. 显而易 ...
- 服务端相关知识学习(五)之Zookeeper leader选举
在上一篇文章中我们大致浏览了zookeeper的启动过程,并且提到在Zookeeper的启动过程中leader选举是非常重要而且最复杂的一个环节.那么什么是leader选举呢?zookeeper为什么 ...
- 无障碍开发(四)之ARIA aria-***状态值
aria-***状态值
- opencv 一些函数的耗时计算
Release 模式 -------------------------------------------------- smooth gaussian : 2 cvtColor CV_BGR2La ...
- C语言无法使用引用,一定要使用怎么办? ------指针的指针做参数
#include <stdio.h> #include <stdlib.h> #include <string.h> void fun1(char** s); vo ...
- hbuilder打包集成文件预览
<div class="attachments"> <div class="name">附件</div> <div c ...