题目传送门:loj bzoj

  题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方。我们观察一下方程,就可以发现自由元数量=边数-点数+连通块数,或者换句话说,若对原图的每个联通块指定一棵生成树,那么确定了生成树之外的边是否进行操作,那么生成树内的边的操作方案就是一定存在并唯一确定的。

  那么我们就只需要判断一下什么样的图无解。我们发现每对一条边进行操作,原图内的黑点数量奇偶性不变,那么我们只需判断图中的是否存在某个联通块有奇数个黑点,若存在即无解。

  加上了删点操作后,我们可以用圆方树来维护连通块信息。因为圆方树的连通性与原图上的连通性相互对应,删除单个点之后,原图被新分成的连通块就是圆方树删除对应点的连通块,那么使用圆方树就可以快速维护删除单个点的连通块信息。

  代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define inf 0x3f3f3f3f
#define mod 1000000007
#define maxn 200010
inline ll read()
{
ll x=; char c=getchar(),f=;
for(;c<''||''<c;c=getchar())if(c=='-')f=-;
for(;''<=c&&c<='';c=getchar())x=x*+c-'';
return x*f;
}
inline void write(ll x)
{
static int buf[],len; len=;
if(x<)x=-x,putchar('-');
for(;x;x/=)buf[len++]=x%;
if(!len)putchar('');
else while(len)putchar(buf[--len]+'');
}
inline void writeln(ll x){write(x); putchar('\n');}
inline void writesp(ll x){write(x); putchar(' ');}
struct edge{
int to,nxt;
};
struct Graph{
edge e[*maxn];
int fir[*maxn],deg[*maxn];
int tot;
inline void clear()
{
memset(fir,,sizeof(fir)); tot=;
memset(deg,,sizeof(deg));
}
inline void add_edge(int x,int y)
{
e[tot].to=y; e[tot].nxt=fir[x]; fir[x]=tot++;
++deg[x];
}
}G,T;
int dfn[maxn],low[maxn],st[maxn],ans[maxn];
int val[*maxn],size[*maxn],fa[*maxn],rt[*maxn];
char s[maxn];
int n,m,tot,tp,cnt;
inline ll power(ll a,ll b)
{
ll ans=;
for(;b;b>>=,a=a*a%mod)
if(b&)ans=ans*a%mod;
return ans;
}
void tarjan(int now,int last)
{
dfn[now]=low[now]=++tot; st[++tp]=now;
for(int i=G.fir[now];~i;i=G.e[i].nxt)
if(i!=(last^)){
if(!dfn[G.e[i].to]){
tarjan(G.e[i].to,i);
low[now]=std::min(low[now],low[G.e[i].to]);
if(low[G.e[i].to]>=dfn[now]){
++cnt;
T.add_edge(now,cnt); T.add_edge(cnt,now);
do{
T.add_edge(st[tp],cnt); T.add_edge(cnt,st[tp]);
}while(st[tp--]!=G.e[i].to);
}
}
else low[now]=std::min(low[now],dfn[G.e[i].to]);
}
}
void dfs(int now,int root)
{
rt[now]=root;
size[now]=val[now];
for(int i=T.fir[now];~i;i=T.e[i].nxt)
if(T.e[i].to!=fa[now]){
fa[T.e[i].to]=now;
dfs(T.e[i].to,root);
size[now]+=size[T.e[i].to];
}
}
void work()
{
n=read(); m=read();
G.clear();
for(int i=;i<=m;i++){
int x=read(),y=read();
G.add_edge(x,y); G.add_edge(y,x);
}
scanf("%s",s);
memset(val,,sizeof(val));
for(int i=;i<=n;i++)
val[i]=(s[i-]=='');
T.clear();
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
tot=tp=; cnt=n;
for(int i=;i<=n;i++)
if(!dfn[i]){
tarjan(i,-);
fa[i]=-;
dfs(i,i);
}
int odd=,block=;
for(int i=;i<=n;i++)
if(fa[i]==-)odd+=(size[i]&),++block;
ans[]=(odd?:power(,m-n+block));
for(int i=;i<=n;i++){
odd-=(size[rt[i]]&);
int flag=;
for(int j=T.fir[i];~j;j=T.e[j].nxt)
if(T.e[j].to!=fa[i]&&(size[T.e[j].to]&)){
flag=; break;
}
if(odd||!flag||((size[rt[i]]-size[i])&))ans[i]=;
else ans[i]=power(,(m-G.deg[i])-(n-)+(block+T.deg[i]-));
odd+=(size[rt[i]]&);
}
for(int i=;i<=n;i++)
writesp(ans[i]);
putchar('\n');
}
int main()
{
int T=read();
while(T--)work();
return ;
}

反色游戏

【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)的更多相关文章

  1. [BZOJ5303] [HAOI2018] 反色游戏

    题目链接 LOJ:https://loj.ac/problem/2524 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303 洛谷:https ...

  2. [BZOJ5303][HAOI2018]反色游戏(Tarjan)

    暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...

  3. 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)

    [BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...

  4. bzoj 5393 [HAOI2018] 反色游戏

    bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...

  5. P4494 [HAOI2018]反色游戏

    P4494 [HAOI2018]反色游戏 题意 给你一个无向图,图上每个点是黑色或者白色.你可以将一条边的两个端点颜色取反.问你有多少种方法每个边至多取反一次使得图上全变成白色的点. 思路 若任意一个 ...

  6. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  7. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  8. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  9. LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)

    题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...

随机推荐

  1. CockroachDB学习笔记——对此的选择

    无意间了解到TiDB,然后知道了他是一款国产团队开源的NewSQL数据库, 看了一下官网,有很多中文的文档和技术分享挺不错的. 但是安装起来好像挺麻烦的说. 测试的硬件环境 也吓死我了,我只有一台笔记 ...

  2. python进阶--多线程多进程

    一.线程和进程 进程是拥有独立内存,能够独立运行的最小单位,也是程序执行的最小单位,线程是程序运行过程中,一个单一的顺序控制流程,是程序执行流的最小单位,一个进程至少包含一个线程,多线程共享进程的内存 ...

  3. ID3算法(MATLAB)

    ID3算法是一种贪心算法,用来构造决策树.ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准,即在每个节点选取还尚未被用来划分的具有最高信息增益的属性作为划分标准,然后继续 ...

  4. 分析UIS-RNN源代码的代码规范和风格

    结合工程实践选题相关的一套源代码,根据其编程语言或项目特点,分析其在源代码目录结构.文件名/类名/函数名/变量名等命名.接口定义规范和单元测试组织形式等方面的做法和特点: 列举哪些做法符合代码规范和风 ...

  5. Kali中安装 Shodan

    工具介绍 Shodan 是一个搜索引擎,但它与 Google 这种搜索网址的搜索引擎不同,Shodan 是用来搜索网络空间中在线设备的,你可以通过 Shodan 搜索指定的设备,或者搜索特定类型的设备 ...

  6. JavaSE基础(八)--Java 循环结构

    Java 循环结构 - for, while 及 do...while 顺序结构的程序语句只能被执行一次.如果您想要同样的操作执行多次,,就需要使用循环结构. Java中有三种主要的循环结构: whi ...

  7. 使用mybatis出现异常:invalid comparison: java.time.LocalDateTime and java.lang.String

    整了半天终于找到问题所在:在mapper文件中,对该参数进行了和字符串的对比,如下: <if test="startTime != null and startTime != '' a ...

  8. [翻译] 深入浅出Go语言调度器:第一部分 - 系统调度器

    目录 译者序 序 介绍 系统调度器 执行指令 Figure 1 Listing 1 Listing 2 Listing 3 线程状态 任务侧重 上下文切换 少即是多 寻找平衡 缓存行 Figure 2 ...

  9. 剑指offer46:圆圈中最后剩下的数字(链表,递归)

    1 题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随 ...

  10. PostgreSQL练习3

    select dname,count(ename),avg(sal),sum(sal) from emp e,dept d where e.deptno=d.deptno group by dname ...