There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.
Given the ball's start position, the destination and the maze, determine whether the ball could stop at the destination.
The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.
Example 1
Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0 Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4) Output: true
Explanation: One possible way is : left -> down -> left -> down -> right -> down -> right.

 
Example 2
Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0 Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2) Output: false
Explanation: There is no way for the ball to stop at the destination.

 
Note:
  1. There is only one ball and one destination in the maze.
  2. Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
  3. The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
  4. The maze contains at least 2 empty spaces, and both the width and height of the maze won't exceed 100.

DFS

对于dfs,如果当前“决定”对后续有影响,可以使用第16行这种方法不断递归。

 class Solution {
public boolean hasPath(int[][] maze, int[] start, int[] destination) {
int m = maze.length, n = maze[].length;
boolean[][] visited = new boolean[m][n];
return dfs(maze, visited, start, destination);
}
private boolean dfs(int[][] maze, boolean[][] visited, int[] start, int[] destination) {
int row = start[], col = start[];
if (row < || row >= maze.length || col < || col >= maze[].length || visited[row][col]) return false;
visited[row][col] = true;
if (row == destination[] && col == destination[]) return true; int[] directions = { , , , -, };
for (int i = ; i < directions.length - ; i++) {
int[] newStart = roll(maze, start[], start[], directions[i], directions[i + ]);
if (dfs(maze, visited, newStart, destination)) return true;
}
return false;
} private int[] roll(int[][] maze, int row, int col, int rowInc, int colInc) {
while (canRoll(maze, row + rowInc, col + colInc)) {
row += rowInc;
col += colInc;
}
return new int[]{row, col};
} private boolean canRoll(int[][] maze, int row, int col) {
if (row >= maze.length || row < || col >= maze[].length || col < || maze[row][col] == ) return false;
return true;
}
}

BFS

 class Solution {
public boolean hasPath(int[][] maze, int[] start, int[] destination) {
Deque<int[]> queue = new ArrayDeque<>();
boolean[][] visited = new boolean[maze.length][maze[].length];
queue.offer(start);
while (!queue.isEmpty()) {
int[] cur = queue.poll();
int row = cur[], col = cur[];
if (row == destination[] && col == destination[]) {
return true;
}
if (visited[row][col]) {
continue;
}
visited[row][col] = true; int[] directions = { , , , -, };
for (int i = ; i < directions.length - ; i++) {
int[] newStart = roll(maze, row, col, directions[i], directions[i + ]);
queue.offer(newStart);
}
}
return false;
} private int[] roll(int[][] maze, int row, int col, int rowInc, int colInc) {
while (canRoll(maze, row + rowInc, col + colInc)) {
row += rowInc;
col += colInc;
}
return new int[] { row, col };
} private boolean canRoll(int[][] maze, int row, int col) {
if (row >= maze.length || row < || col >= maze[].length || col < || maze[row][col] == )
return false;
return true;
}
}

The Maze的更多相关文章

  1. Backtracking algorithm: rat in maze

    Sept. 10, 2015 Study again the back tracking algorithm using recursive solution, rat in maze, a clas ...

  2. (期望)A Dangerous Maze(Light OJ 1027)

    http://www.lightoj.com/volume_showproblem.php?problem=1027 You are in a maze; seeing n doors in fron ...

  3. 1204. Maze Traversal

    1204.   Maze Traversal A common problem in artificial intelligence is negotiation of a maze. A maze ...

  4. uva705--slash maze

    /*这道题我原本是将斜线迷宫扩大为原来的两倍,但是在这种情况下对于在斜的方向上的搜索会变的较容易出错,所以参考了别人的思路后将迷宫扩展为原来的3倍,这样就变成一般的迷宫问题了*/ #include&q ...

  5. HDU 4048 Zhuge Liang's Stone Sentinel Maze

    Zhuge Liang's Stone Sentinel Maze Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/327 ...

  6. Borg Maze(MST & bfs)

    Borg Maze Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9220   Accepted: 3087 Descrip ...

  7. poj 3026 bfs+prim Borg Maze

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9718   Accepted: 3263 Description The B ...

  8. HDU 4035:Maze(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description   When w ...

  9. POJ 3026 : Borg Maze(BFS + Prim)

    http://poj.org/problem?id=3026 Borg Maze Time Limit: 1000MS   Memory Limit: 65536K Total Submissions ...

  10. Borg Maze 分类: POJ 2015-07-27 15:28 5人阅读 评论(0) 收藏

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9971   Accepted: 3347 Description The B ...

随机推荐

  1. python Print 输出

    print 默认输出是换行的,如果要实现不换行需要在变量末尾加上逗号 , #!/usr/bin/python # -*- coding: UTF-8 -*- x="a" y=&qu ...

  2. [kuangbin带你飞]专题一 简单搜索 x

    A - 棋盘问题 POJ - 1321 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋 ...

  3. SVN_SVN的基本认识

    SVN是什么? svn是Subversion的简称,是一个开源的代码版本控制系统,svn就是用于多人共同开发同一个项目,达到资源共用目的工具. 版本控制是什么? 版本控制(Revision contr ...

  4. MySQL_(Java)使用JDBC创建用户名和密码校验查询方法

    MySQL_(Java)使用JDBC向数据库发起查询请求 传送门 MySQL数据库中的数据,数据库名garysql,表名garytb,数据库中存在的用户表 通过JDBC对MySQL中的数据用户名和密码 ...

  5. $\LaTeX$数学公式大全6

    $6\ Binary\ Operation/Relation\ Symbols$$\ast$ \ast$\star$ \star$\cdot$ \cdot$\circ$ \circ$\bullet$ ...

  6. [CSP-S模拟测试]:联合权值·改(暴力)

    题目传送门(内部题143) 输入格式 输入文件的第一行为三个整数$n,m,t$.其中$t$是数据类型. 接下来$m$行,每行两个正整数$u,v$,表示图中的一条边.数据保证不存在重边或自环的情况.   ...

  7. 「BZOJ4242」水壶

    题目链接 戳我 \(Solution\) 我们看到这题之后发现这题不是\(n^2\)把边弄出来后就跟货车运输差不多了,但是看了数据后发现\(n^2\)条边建不出来啊,这里就不详细的讲\(kruskal ...

  8. SRS之接收推流线程:recv

    SrsPublishRecvThread.SrsRecvThread.SrsReusableThread2.SrsThread 之间的关系图 1. recv 线程函数:SrsThread::threa ...

  9. Nginx-rtmp之监听端口的管理

    1. 概述 监听端口属于 server 虚拟主机,它是由 server{} 块下的 listen 配置项决定的. 每监听一个 TCP 端口,都将使用一个独立的 ngx_rtmp_conf_port_t ...

  10. What happens in an async method

    https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-pr ...