Observations


从 $1$ 到 $N$ 的最短路一定是不走回头路的。所谓走回头路是指从序号大的点走到序号小的点。

证明:首先,任意从 $1$ 到 $N$ 的路径的最后一步一定不是回头路。假设存在一条从 $1$ 到 $N$ 的最短路走了回头路,并设这条路最后一次回头是从 $u$ 到 $v$ 且从 $v$ 开始直到终点经过的点依次是 $v = v_0, v_1, \dots v_k = N$。我们有 $v < u < N$,$v = v_0 < v_1 < v_2 <\dots < v_k = N$ 且 $v_i \ne u$。设 $v_i < u$ 而 $v_{i+1} > u$ 则必然存在边 $(u, v_{i+1})$ 和边 $(v_i, v_{i+1})$ 长度相等,因此走 $u, v_{i+1}, \dots, v_{k}$ 更优。矛盾!

为了便于描述,以下用 $(u, v, C)$ 表示连接 $u, v$,长为 $C$ 的无向边,用 $(u \to v, C)$ 表示从 $u$ 到 $v$ 长为 $c$ 的有向边。

从上述证明可以得出推论:将原无向图按下述方式改造成有向图,从 $1$ 到 $N$ 的最短路长度不变:
以下设 $1 \le u < v \le N$。将原图中的无向边 $(u, v, C)$ 删除,加入有向边 $(u \to v, C)$。
再任意加入长度非负的回头边。

考虑上述有向图的一种特殊情形:对于 $i = i, 2, \dots, N$,加上长度为 $0$ 的回头边 $(i \to i - 1, 0)$。
注意到此时对于一组有向边 $(s \to t, C_i)$,$L_i \le s < t \le R_i$,只保留 $(L_i \to R_i, C_i)$ 仍能保持从 $1$ 到 $N$ 的最短路长度不变。

NIKKEI Programming Contest 2019-2 Task D. Shortest Path on a Line的更多相关文章

  1. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

  2. AtCoder NIKKEI Programming Contest 2019 C. Different Strokes (贪心)

    题目链接:https://nikkei2019-qual.contest.atcoder.jp/tasks/nikkei2019_qual_C 题意:给出 n 种食物,Takahashi 吃下获得 a ...

  3. NIKKEI Programming Contest 2019 翻车记

    A:签到. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> ...

  4. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

  5. 【AtCoder】全国統一プログラミング王決定戦予選/NIKKEI Programming Contest 2019

    感觉最近好颓,以后不能这么颓了,要省选了,争取省选之前再板刷一面ATC??? A - Subscribers 简单容斥 #include <bits/stdc++.h> #define f ...

  6. AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)

    题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...

  7. [AtCoder] Yahoo Programming Contest 2019

    [AtCoder] Yahoo Programming Contest 2019   很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...

  8. AtCoder AISing Programming Contest 2019 Task D. Nearest Card Game

    题目分析在代码注释里. int main() { #if defined LOCAL && !defined DUIPAI ifstream in("main.in" ...

  9. Sumitomo Mitsui Trust Bank Programming Contest 2019 Task F. Interval Running

    Link. There is a nice approach to this problem that involves some physical insight. In the following ...

随机推荐

  1. [Luogu] 次小生成树

    https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...

  2. 0和5 (51Nod)

    小K手中有n张牌,每张牌上有一个一位数的数,这个字数不是0就是5.小K从这些牌在抽出任意张(不能抽0张),排成一行这样就组成了一个数.使得这个数尽可能大,而且可以被90整除. 注意: 1.这个数没有前 ...

  3. Mybatis源码学习之DataSource(七)_2

    接上节数据源,本节我们将继续学习未完成的部分,包括无连接池情况下的分析.为什么使用连接池.及mybatis连接池的具体管理原理 不使用连接池的UnpooledDataSource 当 的type属性为 ...

  4. Mybatis源码学习之parsing包(解析器)(二)

    简述 大家都知道mybatis中,无论是配置文件mybatis-config.xml,还是SQL语句,都是写在XML文件中的,那么mybatis是如何解析这些XML文件呢?这就是本文将要学习的就是,m ...

  5. epoll反应堆

    /* * epoll基于非阻塞I/O事件驱动 */ #include <stdio.h> #include <sys/socket.h> #include <sys/ep ...

  6. 如何简单的在linux上安装jdk并配置环境变量

    这篇文章是为了给我一会自己安装的时候方便使用的,所以内容很简单,平时在wendows系统上安装很容易,但是换到linux系统上面就蒙圈了. 一.下载jdk文件 我这提供的是官方的地址:http://w ...

  7. 【零基础】入门51单片机图文教程(Proteus+Keil)

    参考资料: https://www.jianshu.com/p/88dfc09e7403 https://blog.csdn.net/feit2417/article/details/80890218 ...

  8. 使用editcap.exe分割pcap文件

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  9. php 设置error_reporting(0)和ini_set('display_errors', 0)之后,还是显示错误

    php 5.4 apache 2.2 关闭错误报告和错误显示 依然会显示错误 按照我的理解,error_reporting(0)之后就应该不会显示错误了,这是怎么回事? 后来我又试着在php.ini者 ...

  10. dubbo异常filter

    dubbo请求调用过程分析 https://blog.csdn.net/javahongxi/article/details/72876694 浅谈dubbo的ExceptionFilter异常处理  ...