Observations


从 $1$ 到 $N$ 的最短路一定是不走回头路的。所谓走回头路是指从序号大的点走到序号小的点。

证明:首先,任意从 $1$ 到 $N$ 的路径的最后一步一定不是回头路。假设存在一条从 $1$ 到 $N$ 的最短路走了回头路,并设这条路最后一次回头是从 $u$ 到 $v$ 且从 $v$ 开始直到终点经过的点依次是 $v = v_0, v_1, \dots v_k = N$。我们有 $v < u < N$,$v = v_0 < v_1 < v_2 <\dots < v_k = N$ 且 $v_i \ne u$。设 $v_i < u$ 而 $v_{i+1} > u$ 则必然存在边 $(u, v_{i+1})$ 和边 $(v_i, v_{i+1})$ 长度相等,因此走 $u, v_{i+1}, \dots, v_{k}$ 更优。矛盾!

为了便于描述,以下用 $(u, v, C)$ 表示连接 $u, v$,长为 $C$ 的无向边,用 $(u \to v, C)$ 表示从 $u$ 到 $v$ 长为 $c$ 的有向边。

从上述证明可以得出推论:将原无向图按下述方式改造成有向图,从 $1$ 到 $N$ 的最短路长度不变:
以下设 $1 \le u < v \le N$。将原图中的无向边 $(u, v, C)$ 删除,加入有向边 $(u \to v, C)$。
再任意加入长度非负的回头边。

考虑上述有向图的一种特殊情形:对于 $i = i, 2, \dots, N$,加上长度为 $0$ 的回头边 $(i \to i - 1, 0)$。
注意到此时对于一组有向边 $(s \to t, C_i)$,$L_i \le s < t \le R_i$,只保留 $(L_i \to R_i, C_i)$ 仍能保持从 $1$ 到 $N$ 的最短路长度不变。

NIKKEI Programming Contest 2019-2 Task D. Shortest Path on a Line的更多相关文章

  1. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

  2. AtCoder NIKKEI Programming Contest 2019 C. Different Strokes (贪心)

    题目链接:https://nikkei2019-qual.contest.atcoder.jp/tasks/nikkei2019_qual_C 题意:给出 n 种食物,Takahashi 吃下获得 a ...

  3. NIKKEI Programming Contest 2019 翻车记

    A:签到. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> ...

  4. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

  5. 【AtCoder】全国統一プログラミング王決定戦予選/NIKKEI Programming Contest 2019

    感觉最近好颓,以后不能这么颓了,要省选了,争取省选之前再板刷一面ATC??? A - Subscribers 简单容斥 #include <bits/stdc++.h> #define f ...

  6. AtCoder NIKKEI Programming Contest 2019 E. Weights on Vertices and Edges (并查集)

    题目链接:https://atcoder.jp/contests/nikkei2019-qual/tasks/nikkei2019_qual_e 题意:给出一个 n 个点 m 条边的无向图,每个点和每 ...

  7. [AtCoder] Yahoo Programming Contest 2019

    [AtCoder] Yahoo Programming Contest 2019   很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...

  8. AtCoder AISing Programming Contest 2019 Task D. Nearest Card Game

    题目分析在代码注释里. int main() { #if defined LOCAL && !defined DUIPAI ifstream in("main.in" ...

  9. Sumitomo Mitsui Trust Bank Programming Contest 2019 Task F. Interval Running

    Link. There is a nice approach to this problem that involves some physical insight. In the following ...

随机推荐

  1. HDU 1024 Max Sum Plus Plus ——(M段区间的最大和)

    感觉有点奇怪的是这题明明是n^2的复杂度,n=1e6竟然能过= =.应该是数据水了. dp[i][j]表示前j个数,分成i段,且最后一段的最后一个为a[j]的答案.那么转移式是:dp[i][j] = ...

  2. svn上误删除覆盖的文件简单恢复步骤

    因为失误,不小心把同事提交到svn的文件给覆盖删除了.早上来和我说,吓死宝宝了... 还好,svn是个好东西,恢复到某个版本就行了.下面是简单步骤: 1.在本地的svn项目文件,右键---Toitoi ...

  3. LeetCode687----最长同值路径

    给定一个二叉树,找到最长的路径,这个路径中的每个节点具有相同值. 这条路径可以经过也可以不经过根节点. 注意:两个节点之间的路径长度由它们之间的边数表示. 示例 1: 输入: 5 / \ 4 5 / ...

  4. iOS (APP)进程间8中常用通信方式总结

    1 URL Scheme 2 Keychain 3 UIPasteboard 4 UIDocumentInteractionController 5 local socket 6 AirDrop 7 ...

  5. oracle存储过程中进行分页

    create or replace procedure APP_BUSSINESS_CARD_LIST(p_in_str in varchar2,p_out_str out varchar2) is ...

  6. C++ UFT-8和GB2312间的转换

    在这个帖子找到的代码 还蛮好用的 https://bbs.csdn.net/topics/391040755 #include <codecvt> #include <locale& ...

  7. docker进入容器的四种方法

    在使用Docker创建了容器之后,大家比较关心的就是如何进入该容器了,其实进入Docker容器有好几多种方式,这里我们就讲一下常用的几种进入Docker容器的方法. 进入Docker容器比较常见的几种 ...

  8. vacode查看已安装的插件

  9. Android四层体系架构

    Application应用层 应用是用Java语言编写的运行在虚拟机上的程序,即图中最上层的蓝色部分.手机的上层应用其实,Google最开始时就在Android系统中捆绑了一些核心应用比如e-mail ...

  10. Python3+RobotFramewok 快速入门(二)

    1. 原理 首先解释一下RF的工作原理,官方文档介绍就不赘述了,笔者就框架架构做出一个更加具体的描述 测试套及测试用例集(Test Data即需要用户编写的脚本)通过RF特定的语法解析,然后知道用户要 ...