硬件设计:逻辑电平--差分信号(PECL、LVDS、CML)电平匹配
参考资料:逻辑电平设计规范
由于各种逻辑电平的输入、输出电平标准不一致,所需的输入电流、输出驱动电流也不同,为了使不同逻辑电平能够安全、可靠地连接,逻辑电平匹配将是电路设计中必须考虑的问题。
一、逻辑电平匹配原则
1.1、电平关系,驱动器件的输出电压必须处在负载器件所要求的输入电压范围之内,并保证一定的噪声容限(Vohmin-Vihmin≥0.4V,Vilmax-Volmax≥0.4V)。
1.2、驱动能力,驱动器件必须能满足负载器件对灌电流、拉电流最大需求。
1.3、时延特性,设计中要充分考虑逻辑电平转换带来的延时,保证数据传输能满足负载器件的时序容限,特别是高速信号。
1.4、上升/下降时间特性,应保证Tplh和Tphl满足电路时序关系的要求和EMC的要求。
1.5、电压过冲要求,过冲不应超出器件允许的电压绝对最大值,否则有可能导致器件损坏。
二、匹配电路分析
2.1、LVDS到LVDS的连接
LVDS的输入与输出都是内匹配的,所以LVDS之间可以直接连接,具体可参考:硬件设计:逻辑电平--LVDS。
2.2、PECL到PECL的连接
PECL电平的直流偏置电路要求是戴维南等效终端电路为输出负载通过50Ω电阻接到VCC-2V的电源上,如图1所示。在这种负载条件下,OUT+与OUT-的静态电平典型值为VCC-1.3V,输出电流典型值为14mA。
图1 标准PECL终端
PECL到PECL的连接包括直流耦合和交流耦合两种方式;

图2PECL直流耦合匹配电路
直流耦合的电路连接如图2所示,差分单端线对交流信号的等效电路为连接50Ω阻抗到地;直流偏置的等效电路为连接50Ω电阻到VCC-2V,且通过50Ω电阻的电流为14mA。所以R1、R2满足的公式为:
R1//R2=50 交流等效:电压源短路,电流源开路
R2/(R1+R2)=(VCC-2V)/VCC 直流等效:14mA电流源与VCC电压源共同作用,使线上电压为VCC-1.3V;当只考虑14mA电流源时,负载为R1//R2,所以输出线路上的电压为0.7V;为满足要求,需要电阻分压为VCC-2V。
综合上面两式:
3.3V情况下:R1=130Ω R2=82Ω;
5V情况下:R1=82Ω R2=130Ω;

图3 PECL交流耦合匹配电路
交流耦合的电路连接如图3所示,有a和b两种匹配方式;对于图a的匹配电路分析如下:
1.驱动端
交流:交流信号直接通过电容耦合至后级电路,耦合电容和电阻R1靠近输出端;
直流:R1提供14mA到地的通路,且信号线上的等效电压为VCC-1.3V,即R1=(VCC-1.3V)/14mA;(电源为3.3V时,R1=142Ω(一般取142Ω~200Ω);电源为5V时,R1=270Ω)
2.接收端
交流:R2//R3的等效电阻为50Ω;
直流:分压电路使线上电压偏压到VCC-1.3V,即R3*VCC/(R2+R3)=VCC-1.3V;
计算得:R2=50VCC/(VCC-1.3V) R3=50VCC/1.3V;
3.3V情况下:R2=82Ω R3=130Ω;
5V情况下:R2=68Ω R3=180Ω;
图b的匹配电路分析如下:
1.驱动端
交流:交流信号直接通过电容耦合至后级电路,耦合电容和电阻R1靠近输出端;
直流:R1提供14mA到地的通路,且信号线上的等效电压为VCC-1.3V,即R1=(VCC-1.3V)/14mA;(电源为3.3V时,R1=142Ω(一般取142Ω~200Ω);电源为5V时,R1=270Ω)
2.接收端
交流:R2//R3//50的等效电阻约为50Ω;
直流:分压电路使线上电压偏压到VCC-1.3V,即R3*VCC/(R2+R3)=VCC-1.3V;
所以R2和R3通常选如下值:3.3V情况下:R2=2.7K R3=4.3K;
5V情况下:R2=2.7K R3=7.8K;
2.3、LVPECL到CML的连接
LVPECL到CML的连接包括直流耦合和交流耦合两种方式,交流耦合的方式如图4所示;

图4 LVPECL到CML的交流耦合方式
1.驱动端
驱动端的直流偏置电路和PECL和PECL的交流耦合情况一样,所以R的取值为142Ω~200Ω;
如果LVPECL的输出信号摆幅大于CML的接收范围(LVPECL输出摆幅为600~1000mV,CML输入摆幅为400~1000mV),可以在信号通道上串一个25Ω的电阻,这时CML输入端的电压摆幅变为原来的0.67倍,比例关系计算可参考硬件设计--阻抗匹配。
2.接收端
由于CML接收器内部一般包含50Ω的匹配电阻,所以耦合电容输出端直连CML接收器。

图5 LVPECL到CML直流耦合电平转换网络
LVPECL到CML的直流耦合方式如图5所示,在LVPECL到CML的直流耦合方式中需要一个电平转换网络,该电平转换网络的作用是匹配LVPECL的输出与CML的输入共模电压。一般要求该电平转换网络引入的损耗要小,以保证LVPECL的输出经过衰减后仍能满足CML的输入灵敏度的要求;另外还要求自LVPECL端看到的负载阻抗近似50Ω,所以有以下方程式:

计算结果为:R1=170Ω R2=82.5R R3=450Ω;
增益要求取决于芯片,当芯片输入灵敏度要求为20mV时,20mV/400mV=0.05;
2.4、CML到LVPECL的连接
CML到LVPECL的连接基本上都是采用交流耦合的方式,如图6所示,电阻网络计算方式可参考2.2小节。

图6 CML到LVPECL交流耦合方式
当LVPECL有内部偏置时,匹配电路可设计如图7所示。

图7 CML到LVPECL交流耦合方式(LVPECL带内部偏置)
2.5、LVPECL到LVDS的连接
LVPECL到LVDS的连接方式有直流耦合和交流耦合两种方式,其中LVPECL到LVDS的直流耦合方式需要一个电阻网络,如图8所示,设计该网络时需考虑:
1.LVPECL的最优输出负载为50Ω接到VCC-2V;
2.电阻网络引入的衰减不应太大,LVPECL输出信号经衰减后仍能落在LVDS的有效范围内;
3.LVDS的输入差分阻抗为100Ω,或者单端到虚拟地为50Ω(该阻抗不提供直流通路);

图8 LVPECL到LVDS直流耦合电平转换网络
要完成LVPECL到LVDS的逻辑转换,需要满足如下方程式:

计算结果得:R1=182Ω R2=48Ω R3=48Ω VA=1.14V RAC=51.8Ω RDC=62.8Ω Gain=0.337;
所以得到LVPECL到LVDS直流耦合连接如图9所示。

图9 LVPECL到LVDS的连接
LVPECL到LVDS的交流耦合如图10所示,LVPECL的输出端到地需加直流偏置电阻(142Ω~200Ω),同时信号通道上一定要串接50Ω的电阻,以提供一定衰减。LVDS的输入端到地需加5K的电阻,以提供近似0.86V的共模电压(LVDS输入端并联100Ω电阻,对于交流来说没有地电平,只有虚拟地电平,所以加5K电阻到地,确定实际地电平)。

图10 LVPECL到LVDS交流耦合方式
2.6、LVDS到LVPECL的连接
LVDS到LVPECL的连接方式有直流耦合和交流耦合两种方式,当采用直流耦合方式时,需要增加一个电阻网络,用于完成直流电平的转换,如图11所示,设计该网络时需考虑:
1.LVDS输出电平为1.2V,LVPECL的输入电平为Vcc-1.3V;
2.LVDS的输出是以地为基准,而LVPECL的输入是以电源为基准,这要求考虑电阻网络时应注意LVDS的输出电位不应对供电电源敏感;
3.需要折中考虑功耗和速度,如果电阻值取的较小,可以允许电路在更高的速度下工作,但功耗较大,LVDS的输出性能容易受电源的波动影响;
4.考虑电阻网络与传输线的阻抗匹配问题;

图11 LVDS到LVPECL直流耦合方式
要完成LVDS到LVPECL的逻辑转换,需要满足如下方程式:

计算结果得:R1=406Ω R2=270Ω R3=440Ω RIN=50Ω Gain=0.62;
但考虑到避免非常用料的使用,所以最终取值可选择:R1=402Ω R2=270Ω R3=442Ω RIN=49.9Ω Gain=0.62;
LVDS的最小差分输出信号摆幅为500mV,而经过上述转换网络后加到LVPECL输入端的信号摆幅变为310mV,虽然该幅度低于LVPECL的输入标准,但是对于绝大数LVPECL电路来说,该幅度是足够的。
LVDS到LVPECL的交流耦合方式主要有图12中三种方式,在耦合电容前完成阻抗匹配然后给LVPECL增加直流偏置,或者直流偏置和阻抗匹配在一起,具体计算方式可参考2.2小节。

图12 LVDS到LVPECL交流耦合方式
2.7、CML到LVDS的连接
一般情况下,在光传输系统中没有CML和LVDS的互连问题,因为LVDS通常是作并联数据的传输,数据速率为155MHz,622MHz或1.25GHz;而CML常用来做串行数据的传输,数据速率为2.5GHz或10GHz。
硬件设计:逻辑电平--差分信号(PECL、LVDS、CML)电平匹配的更多相关文章
- Quartus ii 设计中的差分信号在例化时的命名规则
在Quartus中做设计,如果使用了差分信号的,如DDR的IP中的mem_ck与mem_ck_n,mem_dqs与mem_dqs_n,将其引入输出端口时,对其命名有一定的规则,否则就会出现错误. 如下 ...
- 20140919-FPGA-有效观察设计中的差分信号
今天回来坐在电脑前,打开Xilinx的Documentation Navigator寻找NCO相关的User Guide,但是在不经意中发现了一个这样的IP,我感觉对于观察设计中的查分信号十分有用.之 ...
- 高速数字逻辑电平(8)之LVDS差分信号深度详解
原文地址点击这里: LVDS(Low-Voltage Differential Signaling ,低电压差分信号)是美国国家半导体(National Semiconductor, NS,现TI)于 ...
- SLAM+语音机器人DIY系列:(四)差分底盘设计——1.stm32主控硬件设计
摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为 ...
- 硬件设计原理图Checklist 参考案例二 【转载】
类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...
- 差分信号(Differential Signal)
差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢? ...
- DDR电源硬件设计要点
一.DDR电源简介 1. 电源 DDR的电源可以分为三类: a.主电源VDD和VDDQ,主电源的要求是VDDQ=VDD,VDDQ是给IO buffer供电的电源,VDD是给但是一般的使用中都是把VDD ...
- HDMI接口基础知识及硬件设计
参考资料:http://blog.csdn.net/u013625961/article/details/53434189: http://blog.csdn.net/u014276460/artic ...
- 硬件设计--DC/DC电源芯片详解
本文参考:http://www.elecfans.com/article/83/116/2018/20180207631874.html https://blog.csdn.net/wangdapao ...
- UWB硬件设计相关内容
1.dw1000最小系统 2.器件选择建议: 射频前端 射频前端需要将差分信号转换成单端射频信号,一般使用HHM1595A1(俗称巴伦). 频率参考 晶振一般选择38.4MHZ的TCXO,但是要注 ...
随机推荐
- How to display XML in a JTree using JDOM
How to display XML in a JTree using JDOM This brief tutorial will explain how to use Java to make an ...
- S2P销讯通-SFE人才对企业管理层至关重要
SFE这一概念,最初由外资企业引入,如今已逐渐被内资企业所采纳并融入其组织结构中,不少企业正积极构建这一部门. 1 我们观察到,近两年企业内对于SFE部门所需的人才需求急剧上升.这一部门,在外资企业中 ...
- sqlserver查询某数据库下表的占用空间
要查看 SQL Server 中哪个表占用的空间最多,您可以使用以下查询来列出所有表及其占用的空间大小,并按照占用空间从大到小进行排序: SELECT t.NAME AS TableName, p.r ...
- Docker跨主机跨服务器迁移
主要作用: 就是让配置好的容器,可以得到复用,后面用到得的时候就不需要重新配置. 其中涉及到的命令有: docker commit 将容器保存为镜像 docker save -o 将镜像备份为tar ...
- 序列化与反序列化的概念、基于django原生编写5个接口、drf介绍和快速使用、cbv源码分析
目录 一.序列化反序列化 二.基于django原生编写5个接口 三.drf介绍和快速使用 概念 安装 代码 四.cbv源码分析 一.序列化反序列化 api接口开发,最核心最常见的一个过程就是序列化,所 ...
- 【转载】 SpringBoot声明式事务的简单运用
https://blog.csdn.net/justry_deng/article/details/80828180 关于事物的基本概念等这里就不介绍了. Spring声明式事物的实现,有两种方式:第 ...
- 使用百度地图API服务中的问题汇总
1.服务器端与浏览器端的AK的区别 服务端就是指数据操作需要在百度地图服务器上进行接口数据交互,不能在前端代码中直接调用,跨域不支持,开发多一个后端: 浏览器端就是指数据操作需要在Web前端就可以完成 ...
- 零基础Windows Server搭建部署Word Press 博客系列教程(2):从菜鸡到高手之Windows Server 环境配置
上一篇:零基础Windows Server搭建部署Word Press 博客系列教程(1):从萌新到菜鸡之云主机配置与备案 本篇教程主要介绍在云主机上安装好相关组件并配置好环境,直至网站上线. 1.之 ...
- Solution -「LOCAL」Minimal DFA
\(\mathscr{Description}\) Private link. 令 \(\Sigma=\{\texttt a,\texttt b\}\),对于所有形式语言 \(L\subset ...
- ClickHouse-4SQL参考
SQL参考 ClickHouse支持以下形式的查询: SELECT INSERT INTO CREATE ALTER 其他类型的查询 ClickHouse SQL 语句 语句表示可以使用 SQL 查询 ...