参考资料:逻辑电平设计规范

PECL电平匹配设计指南

CML信号与LVPECL信号的连接

硬件设计:逻辑电平--CML

硬件设计:逻辑电平--ECL/PECL/LVPECL

硬件设计:逻辑电平--LVDS

LVPECL信号与LVDS信号之间的连接

  由于各种逻辑电平的输入、输出电平标准不一致,所需的输入电流、输出驱动电流也不同,为了使不同逻辑电平能够安全、可靠地连接,逻辑电平匹配将是电路设计中必须考虑的问题。

一、逻辑电平匹配原则

  1.1、电平关系,驱动器件的输出电压必须处在负载器件所要求的输入电压范围之内,并保证一定的噪声容限(Vohmin-Vihmin≥0.4V,Vilmax-Volmax≥0.4V)。

  1.2、驱动能力,驱动器件必须能满足负载器件对灌电流、拉电流最大需求。

  1.3、时延特性,设计中要充分考虑逻辑电平转换带来的延时,保证数据传输能满足负载器件的时序容限,特别是高速信号。

  1.4、上升/下降时间特性,应保证Tplh和Tphl满足电路时序关系的要求和EMC的要求。

  1.5、电压过冲要求,过冲不应超出器件允许的电压绝对最大值,否则有可能导致器件损坏。

二、匹配电路分析

  2.1、LVDS到LVDS的连接

  LVDS的输入与输出都是内匹配的,所以LVDS之间可以直接连接,具体可参考:硬件设计:逻辑电平--LVDS

  2.2、PECL到PECL的连接

  PECL电平的直流偏置电路要求是戴维南等效终端电路为输出负载通过50Ω电阻接到VCC-2V的电源上,如图1所示。在这种负载条件下,OUT+与OUT-的静态电平典型值为VCC-1.3V,输出电流典型值为14mA。

图1 标准PECL终端

  PECL到PECL的连接包括直流耦合和交流耦合两种方式;

图2PECL直流耦合匹配电路

  直流耦合的电路连接如图2所示,差分单端线对交流信号的等效电路为连接50Ω阻抗到地;直流偏置的等效电路为连接50Ω电阻到VCC-2V,且通过50Ω电阻的电流为14mA。所以R1、R2满足的公式为:

  R1//R2=50  交流等效:电压源短路,电流源开路

  R2/(R1+R2)=(VCC-2V)/VCC  直流等效:14mA电流源与VCC电压源共同作用,使线上电压为VCC-1.3V;当只考虑14mA电流源时,负载为R1//R2,所以输出线路上的电压为0.7V;为满足要求,需要电阻分压为VCC-2V。

  综合上面两式:

  3.3V情况下:R1=130Ω  R2=82Ω;

  5V情况下:R1=82Ω    R2=130Ω;

图3 PECL交流耦合匹配电路

  交流耦合的电路连接如图3所示,有a和b两种匹配方式;对于图a的匹配电路分析如下:

  1.驱动端

  交流:交流信号直接通过电容耦合至后级电路,耦合电容和电阻R1靠近输出端;

  直流:R1提供14mA到地的通路,且信号线上的等效电压为VCC-1.3V,即R1=(VCC-1.3V)/14mA;(电源为3.3V时,R1=142Ω(一般取142Ω~200Ω);电源为5V时,R1=270Ω)

  2.接收端

  交流:R2//R3的等效电阻为50Ω;

  直流:分压电路使线上电压偏压到VCC-1.3V,即R3*VCC/(R2+R3)=VCC-1.3V;

  计算得:R2=50VCC/(VCC-1.3V)  R3=50VCC/1.3V;

  3.3V情况下:R2=82Ω  R3=130Ω;

  5V情况下:R2=68Ω  R3=180Ω;

  图b的匹配电路分析如下:

  1.驱动端

  交流:交流信号直接通过电容耦合至后级电路,耦合电容和电阻R1靠近输出端;

  直流:R1提供14mA到地的通路,且信号线上的等效电压为VCC-1.3V,即R1=(VCC-1.3V)/14mA;(电源为3.3V时,R1=142Ω(一般取142Ω~200Ω);电源为5V时,R1=270Ω)

  2.接收端

  交流:R2//R3//50的等效电阻约为50Ω;

  直流:分压电路使线上电压偏压到VCC-1.3V,即R3*VCC/(R2+R3)=VCC-1.3V;

  所以R2和R3通常选如下值:3.3V情况下:R2=2.7K  R3=4.3K;

  5V情况下:R2=2.7K  R3=7.8K;

  2.3、LVPECL到CML的连接

  LVPECL到CML的连接包括直流耦合和交流耦合两种方式,交流耦合的方式如图4所示;

图4 LVPECL到CML的交流耦合方式

  1.驱动端

  驱动端的直流偏置电路和PECL和PECL的交流耦合情况一样,所以R的取值为142Ω~200Ω;

  如果LVPECL的输出信号摆幅大于CML的接收范围(LVPECL输出摆幅为600~1000mV,CML输入摆幅为400~1000mV),可以在信号通道上串一个25Ω的电阻,这时CML输入端的电压摆幅变为原来的0.67倍,比例关系计算可参考硬件设计--阻抗匹配

  2.接收端

  由于CML接收器内部一般包含50Ω的匹配电阻,所以耦合电容输出端直连CML接收器。

图5 LVPECL到CML直流耦合电平转换网络

  LVPECL到CML的直流耦合方式如图5所示,在LVPECL到CML的直流耦合方式中需要一个电平转换网络,该电平转换网络的作用是匹配LVPECL的输出与CML的输入共模电压。一般要求该电平转换网络引入的损耗要小,以保证LVPECL的输出经过衰减后仍能满足CML的输入灵敏度的要求;另外还要求自LVPECL端看到的负载阻抗近似50Ω,所以有以下方程式:

  计算结果为:R1=170Ω  R2=82.5R  R3=450Ω;

  增益要求取决于芯片,当芯片输入灵敏度要求为20mV时,20mV/400mV=0.05;

  2.4、CML到LVPECL的连接

  CML到LVPECL的连接基本上都是采用交流耦合的方式,如图6所示,电阻网络计算方式可参考2.2小节。

图6 CML到LVPECL交流耦合方式

  当LVPECL有内部偏置时,匹配电路可设计如图7所示。

图7 CML到LVPECL交流耦合方式(LVPECL带内部偏置)

  2.5、LVPECL到LVDS的连接

  LVPECL到LVDS的连接方式有直流耦合和交流耦合两种方式,其中LVPECL到LVDS的直流耦合方式需要一个电阻网络,如图8所示,设计该网络时需考虑:

  1.LVPECL的最优输出负载为50Ω接到VCC-2V;

  2.电阻网络引入的衰减不应太大,LVPECL输出信号经衰减后仍能落在LVDS的有效范围内;

  3.LVDS的输入差分阻抗为100Ω,或者单端到虚拟地为50Ω(该阻抗不提供直流通路);

图8 LVPECL到LVDS直流耦合电平转换网络

  要完成LVPECL到LVDS的逻辑转换,需要满足如下方程式:

  计算结果得:R1=182Ω  R2=48Ω  R3=48Ω  VA=1.14V  RAC=51.8Ω  RDC=62.8Ω  Gain=0.337;

  所以得到LVPECL到LVDS直流耦合连接如图9所示。

图9 LVPECL到LVDS的连接

  LVPECL到LVDS的交流耦合如图10所示,LVPECL的输出端到地需加直流偏置电阻(142Ω~200Ω),同时信号通道上一定要串接50Ω的电阻,以提供一定衰减。LVDS的输入端到地需加5K的电阻,以提供近似0.86V的共模电压(LVDS输入端并联100Ω电阻,对于交流来说没有地电平,只有虚拟地电平,所以加5K电阻到地,确定实际地电平)。

图10 LVPECL到LVDS交流耦合方式

  2.6、LVDS到LVPECL的连接

  LVDS到LVPECL的连接方式有直流耦合和交流耦合两种方式,当采用直流耦合方式时,需要增加一个电阻网络,用于完成直流电平的转换,如图11所示,设计该网络时需考虑:

  1.LVDS输出电平为1.2V,LVPECL的输入电平为Vcc-1.3V;

  2.LVDS的输出是以地为基准,而LVPECL的输入是以电源为基准,这要求考虑电阻网络时应注意LVDS的输出电位不应对供电电源敏感;

  3.需要折中考虑功耗和速度,如果电阻值取的较小,可以允许电路在更高的速度下工作,但功耗较大,LVDS的输出性能容易受电源的波动影响;

  4.考虑电阻网络与传输线的阻抗匹配问题;

图11 LVDS到LVPECL直流耦合方式

  要完成LVDS到LVPECL的逻辑转换,需要满足如下方程式:

  计算结果得:R1=406Ω  R2=270Ω  R3=440Ω  RIN=50Ω  Gain=0.62;

  但考虑到避免非常用料的使用,所以最终取值可选择:R1=402Ω  R2=270Ω  R3=442Ω  RIN=49.9Ω  Gain=0.62;

  LVDS的最小差分输出信号摆幅为500mV,而经过上述转换网络后加到LVPECL输入端的信号摆幅变为310mV,虽然该幅度低于LVPECL的输入标准,但是对于绝大数LVPECL电路来说,该幅度是足够的。

  LVDS到LVPECL的交流耦合方式主要有图12中三种方式,在耦合电容前完成阻抗匹配然后给LVPECL增加直流偏置,或者直流偏置和阻抗匹配在一起,具体计算方式可参考2.2小节。

图12 LVDS到LVPECL交流耦合方式

  2.7、CML到LVDS的连接

  一般情况下,在光传输系统中没有CML和LVDS的互连问题,因为LVDS通常是作并联数据的传输,数据速率为155MHz,622MHz或1.25GHz;而CML常用来做串行数据的传输,数据速率为2.5GHz或10GHz。

硬件设计:逻辑电平--差分信号(PECL、LVDS、CML)电平匹配的更多相关文章

  1. Quartus ii 设计中的差分信号在例化时的命名规则

    在Quartus中做设计,如果使用了差分信号的,如DDR的IP中的mem_ck与mem_ck_n,mem_dqs与mem_dqs_n,将其引入输出端口时,对其命名有一定的规则,否则就会出现错误. 如下 ...

  2. 20140919-FPGA-有效观察设计中的差分信号

    今天回来坐在电脑前,打开Xilinx的Documentation Navigator寻找NCO相关的User Guide,但是在不经意中发现了一个这样的IP,我感觉对于观察设计中的查分信号十分有用.之 ...

  3. 高速数字逻辑电平(8)之LVDS差分信号深度详解

    原文地址点击这里: LVDS(Low-Voltage Differential Signaling ,低电压差分信号)是美国国家半导体(National Semiconductor, NS,现TI)于 ...

  4. SLAM+语音机器人DIY系列:(四)差分底盘设计——1.stm32主控硬件设计

    摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为 ...

  5. 硬件设计原理图Checklist 参考案例二 【转载】

    类别 描述 检视规则 原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题. 检视规则 原理图要和公司团队和可以邀请的专家一起进行检视. 检视规则 第一次原理图发出进行集体检视后所有的修改 ...

  6. 差分信号(Differential Signal)

    差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢?  ...

  7. DDR电源硬件设计要点

    一.DDR电源简介 1. 电源 DDR的电源可以分为三类: a.主电源VDD和VDDQ,主电源的要求是VDDQ=VDD,VDDQ是给IO buffer供电的电源,VDD是给但是一般的使用中都是把VDD ...

  8. HDMI接口基础知识及硬件设计

    参考资料:http://blog.csdn.net/u013625961/article/details/53434189: http://blog.csdn.net/u014276460/artic ...

  9. 硬件设计--DC/DC电源芯片详解

    本文参考:http://www.elecfans.com/article/83/116/2018/20180207631874.html https://blog.csdn.net/wangdapao ...

  10. UWB硬件设计相关内容

    1.dw1000最小系统 2.器件选择建议: 射频前端  射频前端需要将差分信号转换成单端射频信号,一般使用HHM1595A1(俗称巴伦). 频率参考  晶振一般选择38.4MHZ的TCXO,但是要注 ...

随机推荐

  1. Shiro 漏洞复现

    Shiro 漏洞复现 shiro是什么? ApacheShiro是一个灵活且全面的Java安全框架,它为现代应用程序提供了认证.授权.加密和会话管理等核心安全功能. shiro组件识别 1.在访问及登 ...

  2. Kafka之入门

    什么是 Kafka Kafka 是一个分布式流式平台,它有三个关键能力 订阅发布记录流,它类似于企业中的消息队列 或 企业消息传递系统 以容错的方式存储记录流 实时记录流 Kafka 的应用 作为消息 ...

  3. Educational Codeforces Round 90 (Rated for Div2)

    Donut Shops 现在有两个超市,第一个超市的物品按件卖,每件商品的售价为\(a\)元:第二个超市的物品按箱卖,每箱有\(b\)件物品,每箱售价为\(c\)元,现在要让你买\(x\)和\(y\) ...

  4. canvas(六)绘制带说明的饼图

    1.前言 将以下数据渲染成饼图,数据格式: var data = [ {value:"10",title:"16-22的年龄人数"}, {value:" ...

  5. NET 6 中新增的LINQ 方法

    .NET 6 中添加了许多 LINQ 方法. 下表中列出的大多数新方法在 System.Linq.Queryable 类型中具有等效方法. 欢迎关注 如果你刻意练习某件事情请超过10000小时,那么你 ...

  6. 19号CSS学习

    一.CSS的复合选择器 更高效的选择目标元素. 后代选择器.子选择器.并集选择器.伪类选择器等. 1.后代选择器 可以选择父元素里的子元素. 又称包含选择器. 必须是空格,必须是后代,ul li {c ...

  7. (三)Springboot + vue + 达梦数据库构建RBAC权限模型前后端分离脚手架保姆级教程(前端项目)

    XX后台管理系统 1.技术选型与环境要求 1.1 项目技术选型 1.1.1 前端技术 HTML 5 CSS 3 lavaScript Vue Element UI 1.1.2 后端技术 SpringB ...

  8. Swagger 调试,我不想再复制粘贴token啦~

    作为后端开发,进行Web Api 调试,除了使用 Postman, Apifox 等 Web Api 调试工具之外,我想使用Swagger进行调试应该是更方便,更常用的方式了吧. 那么在需要 toke ...

  9. oracle用命令执行sql脚本文件

    当sql命令过多(sql文件过大)时,用plsql执行时比较慢而且容易超时,此时可以用sqlplus命令直接执行sql脚本文件,方法如下: 1.sqlplus登录 >sqlplus userna ...

  10. Http2服务调用排坑记

    原文作者:陈友行原文链接:https://www.nginx.org.cn/article/detail/89转载来源:NGINX开源社区著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...