[NOI2010]能量采集

题目描述

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

栋栋的植物种得非常整齐,一共有\(n\)列,每列有\(m\)棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标\((x, y)\)来表示,其中\(x\)的范围是\(1\)至\(n\),表示是在第\(x\)列,\(y\)的范围是\(1\)至\(m\),表示是在第\(x\)列的第\(y\)棵。

由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是\((0,0)\)。

能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有\(k\)棵植物,则能 量的损失为\(2k + 1\)。例如,当能量汇集机器收集坐标为\((2, 4)\)的植物时,由于连接线段上存在一棵植物\((1, 2)\),会产生\(3\)的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为\(1\)。现在要计算总的能量损失。

下面给出了一个能量采集的例子,其中\(n = 5\),\(m = 4\),一共有\(20\)棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

在这个例子中,总共产生了\(36\)的能量损失。

输入输出格式

输入格式:

仅包含一行,为两个整数\(n\)和\(m\)。

输出格式:

仅包含一个整数,表示总共产生的能量损失。

说明

对于\(10\%\)的数据:\(1 ≤ n, m ≤ 10\);

对于\(50\%\)的数据:\(1 ≤ n, m ≤ 100\);

对于\(80\%\)的数据:\(1 ≤ n, m ≤ 1000\);

对于\(90\%\)的数据:\(1 ≤ n, m ≤ 10,000\);

对于\(100\%\)的数据:\(1 ≤ n, m ≤ 100,000\)。


题意:求

\[\sum_{i=1}^n\sum_{j=1}^m2 \times gcd(i,j)-1
\]

直接暴力推式子了

\[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]
\]

设\(a=\lfloor\frac{n}{k}\rfloor,b=\lfloor\frac{m}{k}\rfloor\)

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=1]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b\sum_{d|gcd(i,j)}\mu(d)
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b\sum_{d=1}^{min(i,j)}\mu(d)[d|gcd(i,j)]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(a,b)}\mu(d)\sum_{i=1}^a\sum_{j=1}^b[d|gcd(i,j)]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(a,b)}\mu(d)\lfloor\frac{a}{d}\rfloor\lfloor\frac{b}{d}\rfloor
\]

到这里虽然不够优,但是显然已经可以了。

复杂度:\(O(\sum\limits_{i=1}^ni^{\frac{1}{2}})\)其实就是\(O(n\sqrt n)\)


Code:

#include <cstdio>
#define ll long long
const int N=1e5;
ll ans=0;
int mu[N+10],pri[N+10],ispri[N+10],cnt;
void init()
{
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
mu[i]=-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[i*pri[j]]=-mu[i];
}
}
mu[1]=1;
for(int i=2;i<=N;i++) mu[i]+=mu[i-1];
}
int n,m;
int min(int x,int y){return x<y?x:y;}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int k=1;k<=min(n,m);k++)
{
int a=n/k,b=m/k;
ll sum=0;
for(int l=1,r;l<=min(a,b);l=r+1)
{
r=min(a/(a/l),b/(b/l));
sum+=1ll*(mu[r]-mu[l-1])*(a/l)*(b/l);
}
ans+=sum*k;
}
printf("%lld\n",ans*2ll-1ll*n*m);
return 0;
}

2018.10.21

[NOI2010]能量采集 解题报告的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  2. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  3. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  4. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  5. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  8. [NOI2010] 能量采集 (数学)

    [NOI2010] 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...

  9. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

随机推荐

  1. laravel 增删改查 数据库设置 路由设置

    laravel 框架的路由设置: url: http://www.shanzezhao.com/laraverl/my_laravel/public/index.php/indexs laravel ...

  2. PHP实现SMTP邮件的发送实例

    当你还在纠结php内置的mail()函数不能发送邮件时,那么你现在很幸运,此时的这篇文章可以帮助到你! php利用smtp类来发邮件真是屡试不爽,我用过很久了,基本上没出过问题.本博客后台,当博主回复 ...

  3. ruby 操作csv

    1.读取csv 文件中读取:一次读入全部(设置headers使  CSV#shift()  以CSV::Row对象返回而不是数组:使  CSV#read()  返回 CSV::Table 对象而不是数 ...

  4. FIFO的使用场景

    (1) 数据的缓冲.如模型图所示,如果数据的写入速率高,但间隔大,且会有突发;读出速率小,但相对均匀.则通过设置相应深度的FIFO,可以起到数据暂存的功能,且能够使后续处理流程平滑,避免前级突发时,后 ...

  5. maven之package与install的区别

    mvn clean package 先看命令的执行过程 mvn clean install 同样先看执行过程 mvn clean package依次执行了clean.resources.compile ...

  6. P1107 最大整数

    P1107 最大整数 题目描述 设有n个正整数 (n<=20), 将它们连接成一排, 组成一个最大的多位整数. 例如: n=3时, 3个整数13, 312, 343连接成的最大整数为: 3433 ...

  7. Spring MVC 开发 配置

    1.首先在web.xml中配置一个DispatcherServlet,并通过<servlet-mapping>指定需要拦截的url. 下面xml中配置一个拦截.html为后缀的url. & ...

  8. Java检测端口的占用情况

    突然间想到这个问题,在网上搜了一下 http://blog.csdn.net/danieluk/article/details/18518175 网上有很多文章都是用上面那个方法来解决这个问题的,总感 ...

  9. Android应用开发中的夜间模式实现(一)

    前言 在应用开发中会经常遇到要求实现夜间模式或者主题切换具体例子如下,我会先讲解第一种方法. 夜间模式 知乎 网易新闻 沪江开心词场 Pocket 主题切换 腾讯QQ 新浪微博 我今天主要是详述第一种 ...

  10. CCF-NOIP-2018 提高组(复赛) 模拟试题(七)

    T1 Adjoin [问题描述] 定义一种合法的\(0-1\)串:串中任何一个数字都与\(1\)相邻.例如长度为$ 3 的 0-1 $串中,\(101\)是非法的,因为两边的\(1\)没有相邻的\(1 ...