[NOI2010]能量采集

题目描述

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

栋栋的植物种得非常整齐,一共有\(n\)列,每列有\(m\)棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标\((x, y)\)来表示,其中\(x\)的范围是\(1\)至\(n\),表示是在第\(x\)列,\(y\)的范围是\(1\)至\(m\),表示是在第\(x\)列的第\(y\)棵。

由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是\((0,0)\)。

能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有\(k\)棵植物,则能 量的损失为\(2k + 1\)。例如,当能量汇集机器收集坐标为\((2, 4)\)的植物时,由于连接线段上存在一棵植物\((1, 2)\),会产生\(3\)的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为\(1\)。现在要计算总的能量损失。

下面给出了一个能量采集的例子,其中\(n = 5\),\(m = 4\),一共有\(20\)棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

在这个例子中,总共产生了\(36\)的能量损失。

输入输出格式

输入格式:

仅包含一行,为两个整数\(n\)和\(m\)。

输出格式:

仅包含一个整数,表示总共产生的能量损失。

说明

对于\(10\%\)的数据:\(1 ≤ n, m ≤ 10\);

对于\(50\%\)的数据:\(1 ≤ n, m ≤ 100\);

对于\(80\%\)的数据:\(1 ≤ n, m ≤ 1000\);

对于\(90\%\)的数据:\(1 ≤ n, m ≤ 10,000\);

对于\(100\%\)的数据:\(1 ≤ n, m ≤ 100,000\)。


题意:求

\[\sum_{i=1}^n\sum_{j=1}^m2 \times gcd(i,j)-1
\]

直接暴力推式子了

\[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]
\]

设\(a=\lfloor\frac{n}{k}\rfloor,b=\lfloor\frac{m}{k}\rfloor\)

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=1]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b\sum_{d|gcd(i,j)}\mu(d)
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{i=1}^a\sum_{j=1}^b\sum_{d=1}^{min(i,j)}\mu(d)[d|gcd(i,j)]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(a,b)}\mu(d)\sum_{i=1}^a\sum_{j=1}^b[d|gcd(i,j)]
\]

\[=\sum_{k=1}^{min(n,m)}k\sum_{d=1}^{min(a,b)}\mu(d)\lfloor\frac{a}{d}\rfloor\lfloor\frac{b}{d}\rfloor
\]

到这里虽然不够优,但是显然已经可以了。

复杂度:\(O(\sum\limits_{i=1}^ni^{\frac{1}{2}})\)其实就是\(O(n\sqrt n)\)


Code:

#include <cstdio>
#define ll long long
const int N=1e5;
ll ans=0;
int mu[N+10],pri[N+10],ispri[N+10],cnt;
void init()
{
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
mu[i]=-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[i*pri[j]]=-mu[i];
}
}
mu[1]=1;
for(int i=2;i<=N;i++) mu[i]+=mu[i-1];
}
int n,m;
int min(int x,int y){return x<y?x:y;}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int k=1;k<=min(n,m);k++)
{
int a=n/k,b=m/k;
ll sum=0;
for(int l=1,r;l<=min(a,b);l=r+1)
{
r=min(a/(a/l),b/(b/l));
sum+=1ll*(mu[r]-mu[l-1])*(a/l)*(b/l);
}
ans+=sum*k;
}
printf("%lld\n",ans*2ll-1ll*n*m);
return 0;
}

2018.10.21

[NOI2010]能量采集 解题报告的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  2. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  3. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  4. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  5. 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Statu ...

  6. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  7. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  8. [NOI2010] 能量采集 (数学)

    [NOI2010] 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. ...

  9. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

随机推荐

  1. Java学习笔记一:三步搭建Java开发环境

    Java开发环境搭建 一:安装JDK: 1.下载地址:http://www.oracle.com/technetwork/java/javase/downloads 非常显眼的下载界面 2.点击下载后 ...

  2. requests模块基础

    requests模块 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bor ...

  3. poj2230 欧拉回路

    http://poj.org/problem?id=2230 Description Bessie's been appointed the new watch-cow for the farm. E ...

  4. vue发布之后会出现白屏现象主要几种原因和解决办法

    第一种:由于把路由模式mode设置成history了,默认是hash. 解决方法:路由里边router/index.js路由配置里边默认模式是hash,如果你改成了history模式的话,打开也会是一 ...

  5. 8 TFTP代码详解 协议写在程序中

    1.版本1:发送请求 # -*- coding:utf-8 -*- import struct from socket import * #0. 获取要下载的文件名字: downloadFileNam ...

  6. elasticsearch 关联查询

    父-子关系文档 父-子关系文档 在实质上类似于 nested model :允许将一个对象实体和另外一个对象实体关联起来. 而这两种类型的主要区别是:在 nested objects 文档中,所有对象 ...

  7. 高德API+Python解决租房问题(.NET版)

    源码地址:https://github.com/liguobao/58HouseSearch 在线地址:58公寓高德搜房(全国版):http://codelover.link:8080/ 周末闲着无事 ...

  8. 安装Sql Server 2008的时候报错说找不到某个安装文件

           在安装Sql Server 2008的时候,报错说找不到某个安装文件,但是这个文件明明在那,百思不得其解.           最后看到一个老外的文章里面说,你要确认,你能访问到这个文件 ...

  9. ubuntu 把软件源修改为国内源

    国内有很多Ubuntu的镜像源,比如:阿里源.网易源等,还有很多教育网的源,比如:清华源.中科大源等. 这里以清华源为例讲解如何修改Ubuntu 18.04里面默认的源. 修改步骤 第一步:备份原始源 ...

  10. 让PC版网站在移动端原样式显示

    一般PC网站在移动端显示效果往往和PC版原样式不同,为了在移动端下还原原PC站样式,可以采用以下方式解决: 1) 去掉页头的: <meta name="viewport" c ...