【对询问分块】【主席树】bzoj2683 简单题
对操作序列分块,每S次暴力重建主席树。
当S=sqrt(n*log(n))时,复杂度为O(m*sqrt(n*log(n)))。
在线的。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 500001
#define M 200001
struct Point{int x,y,z;};
bool operator < (const Point &a,const Point &b){return a.x<b.x;}
Point t[M];
int en;
struct Node
{
int v,lc,rc;
}T[N*20];
int e,root[M],bel[N],re;
int m,n;
int op[M],xa[M],ya[M],xb[M],yb[M],val[M];
void Insert(int pre,int cur,int p,int v,int l,int r)
{
if(l==r)
{
T[cur].v=T[pre].v+v;
return;
}
int m=(l+r>>1);
if(p<=m)
{
T[cur].lc=++e;
T[cur].rc=T[pre].rc;
Insert(T[pre].lc,T[cur].lc,p,v,l,m);
}
else
{
T[cur].rc=++e;
T[cur].lc=T[pre].lc;
Insert(T[pre].rc,T[cur].rc,p,v,m+1,r);
}
T[cur].v=T[T[cur].lc].v+T[T[cur].rc].v;
}
int Query(int pre,int cur,int ql,int qr,int l,int r)
{
if(ql<=l&&r<=qr) return T[cur].v-T[pre].v;
int m=(l+r>>1),res=0;
if(ql<=m) res+=Query(T[pre].lc,T[cur].lc,ql,qr,l,m);
if(m<qr) res+=Query(T[pre].rc,T[cur].rc,ql,qr,m+1,r);
return res;
}
int main()
{
scanf("%d",&n);
for(int i=1;;++i)
{
scanf("%d",&op[i]);
if(op[i]==1) scanf("%d%d%d",&xa[i],&ya[i],&val[i]);
else if(op[i]==2)
{
scanf("%d%d%d%d",&xa[i],&ya[i],&xb[i],&yb[i]);
if(xa[i]>xb[i]) swap(xa[i],xb[i]);
if(ya[i]>yb[i]) swap(ya[i],yb[i]);
} else break;
}
int sz=(int)sqrt((double)n*log2((double)n));
for(int i=1;;++i)
{
if(op[i]==3) break;
else if(op[i]==2)//query
{
int ans=Query(bel[xa[i]-1],bel[xb[i]],ya[i],yb[i],1,n);
for(int j=(i%sz==0||sz==1)?i-sz+1:i/sz*sz+1;j<=i;++j)
if(op[j]==1&&xa[j]>=xa[i]&&xa[j]<=xb[i]&&ya[j]>=ya[i]&&ya[j]<=yb[i])
ans+=val[j];
printf("%d\n",ans);
}
if(i%sz==0||sz==1)//Rebuild
{
for(int j=1;j<=e;++j) T[j].v=0;
e=en=re=0;
for(int j=1;j<=i;++j)
if(op[j]==1)
t[++en]=(Point){xa[j],ya[j],val[j]};
sort(t+1,t+en+1);
for(int j=1;j<t[1].x;++j) bel[j]=0;
for(int j=1;j<=en;++j)
{
++re;
root[re]=++e;
if(j==en||t[j].x!=t[j+1].x)
{
bel[t[j].x]=e;
int End=(j==en)?n:t[j+1].x-1;
for(int k=t[j].x+1;k<=End;++k)
bel[k]=e;
}
Insert(root[re-1],root[re],t[j].y,t[j].z,1,n);
}
}
}
return 0;
}
【对询问分块】【主席树】bzoj2683 简单题的更多相关文章
- [BZOJ2683]简单题/[BZOJ1176][BalkanOI2007]Mokia
[BZOJ2683]简单题 题目大意: 一个\(n\times n(n\le5\times10^5)\)的矩阵,初始时每个格子里的数全为\(0\).\(m(m\le2\times10^5)\)次操作, ...
- 【bzoj3524】【Poi2014】【Couriers】可持久化线段树(主席树)水题
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=62485671 向大(hei)佬(e)势力学(di ...
- hdu4417 Super Mario (树状数组/分块/主席树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题目大意:给定一个长度为n的序列,有m个询问,每次询问包含l,r,h,即询问区间[l,r]小于等 ...
- 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665
如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...
- bzoj2683简单题 cdq分治
2683: 简单题 Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 1803 Solved: 731[Submit][Status][Discuss] ...
- P5385 [Cnoi2019]须臾幻境(LCT+主席树,思维题)
题目 P5385 [Cnoi2019]须臾幻境 做法 考虑一条边\((u,v)\)是否\([L,R]\)中的贡献:\([L,R]\)中第一条位于\(u,v\)链的边,则减少了一个联通块 实现:\(LC ...
- csp-s模拟测试49(9.22)养花(分块/主席树)·折射(神仙DP)·画作
最近有点头晕........... T1 养花 考场我没想到正解,后来打的主席树,对于每个摸数查找1-(k-1),k-(2k-1)...的最大值,事实上还是很容易被卡的但是没有数据好像还比较友善, 对 ...
- Bzoj2683 简单题
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 1071 Solved: 428 Description 你有一个N*N的棋盘,每个格子内有一个整数, ...
- BZOJ2683: 简单题(cdq分治 树状数组)
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2142 Solved: 874[Submit][Status][Discuss] Descripti ...
随机推荐
- 用npm安装express时报proxy的错误的解决方法
首先要说明一点:当使用npm install <module-name>时安装组件时,安装的目录是cmd的目录+node_modules+组件名 例子如下:假如你现在安装express这个 ...
- WebOS系列-了解Wekbit【邓侃】
注:[转载请注明文章来源.保持原样] 出处:http://www.cnblogs.com/jyli/archive/2010/02/02/1660634.html 作者:李嘉昱 这是Kan老大的We ...
- 【洛谷 P1437】 [HNOI2004]敲砖块 (DP)
题目链接 毒瘤DP题 因为\((i,j)\)能不能敲取决于\((i-1,j)\)和\((i-1,j+1)\),所以一行一行地转移显然是有后效性的. 于是考虑从列入手.我们把这个三角形"左对齐 ...
- setInterval的使用和停用
var res = self.setInterval(function(){ if(typeof(UE.getEditor('editor').body.innerHTML) != "und ...
- VMX指令集
指令 作用 VMPTRLD 加载一个VMCS结构体指针作为当前操作对象 VMPTRST 保存当前VMCS结构体指针 VMCLEAR 清除当前VMCS结构体 VMREAD 读VMCS结构体指定域 VMW ...
- mysql分页查询语法
一.limit语法 SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset LIMIT 子句可以被用于强制 SELECT 语句返回指 ...
- 【转】mybatis循环map的一些技巧
原文地址:http://blog.csdn.net/linminqin/article/details/39154133 循环key: <foreach collection="con ...
- [ kvm ] 进程的处理器亲和性和vCPU的绑定
cpu调用进程或线程的方式: Linux内核的进程调度器根据自有的调度策略将系统中的一个进程调度到某个CPU上执行.一个进程在前一个执行时间是在cpuM上运行,而在后一个执行时间则是在cpuN上运行, ...
- DRF基类APIView的子类GenericAPIView
DRF的基类是APIView类,GenericAPIView类是APIView类的子类. GenericAPIView类有什么存在的意义呢? 其实, 他主要提供了两个用处: 1.提供关于数据库查询的属 ...
- CentOS6.x 安装升级Python2.7.x Python3.4.x
CentOS6.x 安装升级Python2.7.x Python3.4.x 2015-06-07• CentOS.Linux • 评论关闭 CentOS release 6.6 (Final) 安装升 ...