http://acm.hust.edu.cn/vjudge/problem/14338

题意:给定一棵树,每个点有一个值,让你选择k个点,并且这k个点是连在一起的(从任意一个点出发,可以遍历完所有选择的点 并且 不经过没有被选择的点),让这k个点的价值总和最大,纹方案数(Mod1000000007)。

题解:设d[x][k]为必须选择x,以x为根的子树中共选择了k个节点,价值总和最大是多少。

f[x][k]为d[x][k]对应的方案数是多少。

对于x,我们把x的孩子son不断地并到f[x]中。

对于每一个son:d[x][j]=maxx(d[x][j-k],d[son][k]);

需要注意的就是上式中d[x][j]不断地变化,对于当前的son,j变大的时候可能用到的d[x][j-k]是用当前的son更新的。所以要开一个p[x][j]等于当前的son没更新x的时候d[x][j]的值,同理q[x][j]=f[x][j]。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long LL;
const int N=;
const LL Inf=(LL)1e9,Mod=;
struct node{
int x,y,next;
}a[*N];
int len,n,m,r;
int first[N],son[N],w[N];
LL a1,a2,d[N][N],f[N][N],p[N][N],q[N][N]; void ins(int x,int y)
{
len++;
a[len].x=x;a[len].y=y;
a[len].next=first[x];first[x]=len;
} void dfs(int x,int fa)
{
son[x]=;
for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(y==fa) continue;
dfs(y,x);
son[x]+=son[y];
}
} void copy(int x)
{
for(int i=;i<=n;i++) p[x][i]=d[x][i],q[x][i]=f[x][i];
} void dp(int x,int fa)
{
for(int i=;i<=n;i++) d[x][i]=-Inf;
memset(f[x],,sizeof(f[x]));
d[x][]=;f[x][]=;d[x][]=w[x];f[x][]=; copy(x); for(int i=first[x];i;i=a[i].next)
{
int y=a[i].y;
if(y==fa) continue;
dp(y,x);
for(int j=;j<=son[x];j++)
{
for(int k=;k<=son[y] && (j-k)>=;k++)
{
LL dd=p[x][j-k]+d[y][k];
LL ff=(q[x][j-k]*f[y][k])%Mod;
if(dd > p[x][j])
{
if(dd>d[x][j]) d[x][j]=dd,f[x][j]=ff;
else if(dd==d[x][j]) f[x][j]=(f[x][j]+ff)%Mod;
}
else if(dd == p[x][j])
{
if(dd==d[x][j]) f[x][j]=(f[x][j]+ff)%Mod;
}
}
}
copy(x);
} if(d[x][m]>a1) a1=d[x][m],a2=f[x][m];
else if(d[x][m]==a1) a2=(a2+f[x][m])%Mod;
} int main()
{
freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
len=;
memset(first,,sizeof(first));
scanf("%d%d%d",&n,&m,&r);
for(int i=;i<=n;i++) scanf("%d",&w[i]);
for(int i=;i<=r;i++)
{
int x,y;
scanf("%d%d",&x,&y);
x++;y++;
ins(x,y);ins(y,x);
}
dfs(,);
a1=-Inf;
dp(,);
printf("%I64d %I64d\n",a1,a2);
}
return ;
}

【UVALive4685-Succession】树形DP的更多相关文章

  1. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  2. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  3. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  4. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  5. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  6. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  7. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

  8. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  9. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

  10. BZOJ 1040 树形DP+环套树

    就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...

随机推荐

  1. Linux安装防火墙

    1.安装防火墙 1)yum install iptables(centos) 安装IPtables服务 yum install iptables-services 2)清楚规则iptables -F ...

  2. nodejs的交叉(跨平台)编译(to android)

    nodejs的二进制包有两种安装方式node-gyp以及node-pre-gyp 这两条命令会写入该包的安装脚本. node-gyp是使用gyp工具编译源码,因此必须指定交叉编译器(参见http:// ...

  3. C#3DES加密了解一下

    最近一个项目中,因为服务端是用的java开发的,客户端是用的C#,由于通信部分采用到了3DES加密,所以做个记录,以备以后需要的时候直接用. 这是对方(java)的加密算法,和网上流传的代码也差不多( ...

  4. c# 3D图形处理库

    C#的OpenGL类库SharpGL SharpGL 可以让你在 Windows Forms 或者 WPF 应用中轻松的使用 OpenGL 开发图形应用.更多SharpGL信息 Axiom 3D En ...

  5. Browser-Solidity的本地安装及使用介绍

    Browser-Solidity的本地安装及使用介绍 正所谓工欲善其事必先利其器,巧妇也难为无米之炊,所以在学习智能合约之前,必须要先把工具准备好.Browser-Solidity 是 Ethereu ...

  6. POJ 2182 / HDU 2711 Lost Cows(平衡树)

    Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular di ...

  7. jqprint导入jqgrid表格时,内容溢出的原因以及解决方法

    jqprint在导入表格的时候,会将原表格的样式全部拉过来,所以说原表格(如jqgrid的表格)的内容在有滚动条的时候,必须得将宽度设置为100%(等百分比的宽度),不能设置成固定宽度,不然表格内容会 ...

  8. STL中mem_fun与mem_fun_ref的区别[转]

    http://www.cnblogs.com/Purple_Xiapei/archive/2012/05/27/2520483.html STL中mem_fun和mem_fun_ref的用法 分类:  ...

  9. 【SSH】——hql的使用方式及实现原理

    [含义] hql,即Hibernate Query  Language.它与我们熟知的sql很类似,它最大的特点就是对查询进行了面向对象的封装,下面会在具体例子中说明. sql查询的是数据库中的表或字 ...

  10. struts2 下载文件

    作者:禅楼望月 当下载的文件名字中不含有汉字,或者下载的文件不需要考虑用户的权限问题时.直接让超链接的href属性为所要下载的文件名即可.否则最好使用struts2的文件下载机制. 以下载图片为例 完 ...