gluon 实现多层感知机MLP分类FashionMNIST
from mxnet import gluon,init
from mxnet.gluon import loss as gloss, nn
from mxnet.gluon import data as gdata
from mxnet import nd,autograd
import gluonbook as gb import sys # 读取数据
# 读取数据
mnist_train = gdata.vision.FashionMNIST(train=True)
mnist_test = gdata.vision.FashionMNIST(train=False) batch_size = 256
transformer = gdata.vision.transforms.ToTensor()
if sys.platform.startswith('win'):
num_workers = 0
else:
num_workers = 4 # 小批量数据迭代器
train_iter = gdata.DataLoader(mnist_train.transform_first(transformer),batch_size=batch_size,shuffle=True,num_workers=num_workers)
test_iter = gdata.DataLoader(mnist_test.transform_first(transformer),batch_size=batch_size,shuffle=False,num_workers=num_workers) # 定义网络
net = nn.Sequential()
net.add(nn.Dense(256,activation='relu'),nn.Dense(10))
net.initialize(init.Normal(sigma=0.01)) # 损失函数
loss = gloss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.5}) def accuracy(y_hat, y):
return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar() def evaluate_accuracy(data_iter, net):
acc = 0
for X, y in data_iter:
acc += accuracy(net(X), y)
return acc / len(data_iter) num_epochs = 5 def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,trainer=None):
for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0
for X,y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat,y)
l.backward() if trainer is None:
gb.sgd(params,lr,batch_size)
else:
trainer.step(batch_size) train_l_sum += l.mean().asscalar() test_acc = evaluate_accuracy(test_iter,net)
print('epoch %d,loss %.4f,test acc %.3f'%(epoch+1,train_l_sum / len(train_iter),test_acc)) train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)
gluon 实现多层感知机MLP分类FashionMNIST的更多相关文章
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- keras多层感知机MLP
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...
- 小白学习之pytorch框架(5)-多层感知机(MLP)-(tensor、variable、计算图、ReLU()、sigmoid()、tanh())
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 htt ...
- 多层感知机MLP的gluon版分类minist
MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- 学习笔记TF026:多层感知机
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...
- Alink漫谈(十五) :多层感知机 之 迭代优化
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- Alink漫谈(十四) :多层感知机 之 总体架构
Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函 ...
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
随机推荐
- 迪米特法则(Law of Demeter)LoD
using System; using System.Collections.Generic; using System.Text; namespace LawOfDemeter { //也叫Leas ...
- PHP 设置 socket连接
摘要: 作者博文地址:https://www.cnblogs.com/liu-shuai/ nginx和fastcgi的通信方式有两种,一种是TCP的方式,一种是unix socket方式. sock ...
- 单元测试框架AndroidTestCase
我不是讲怎么成为一个安卓测试员,就不写那么多了 就写我们常用的, AndroidTestCase 为一Android平台下通用的测试类,它支持所有JUnit的Assert方法和标准的setUp 和te ...
- 016-hibernateutils模板
package ${enclosing_package}; import org.hibernate.HibernateException; import org.hibernate.Session; ...
- python 模板注入
今天学习了python的模板注入,这里自己搭建环境测试以下,参考文章:http://www.freebuf.com/articles/web/136118.html web 程序包括两个文件: fla ...
- model操作涉及的所有字段(API)
一旦 数据模型 创建完毕, 自然会有存取数据的需要.本文档介绍了由 models 衍生而来的数据库抽象API,及如何创建,得到及更新对象. 贯穿本参考, 我们都会引用下面的民意测验(Poll)应用程序 ...
- 浏览器后退->清除原页面div中填写的数据
需求说明:页面表单用前端用div布局,提交之后跳转到另一个页面,但是考虑到客户奇怪的脑回路,可能会点击浏览器的后退按钮,不知道是个体情况还是都是一样,原本div中填写的数据还依然存在,所以需要让页面在 ...
- 关于GBK、GB2312、UTF8之间的区别
UTF-8:Unicode Transformation Format-8bit,允许含BOM,但通常不含BOM.是用以解决国际上字符的一种多字节编码,它对英文使用8位(即一个字节),中文使用24为( ...
- 初学Hadoop之WordCount词频统计
1.WordCount源码 将源码文件WordCount.java放到Hadoop2.6.0文件夹中. import java.io.IOException; import java.util.Str ...
- SQLServer 2016 Express 安装部署,并配置支持远程连接
在项目中需要用到SQLServer,于是安装部署了SQLServer,部署的过程中遇到了一下问题,记录一下以便之后遇到同样问题能快速解决. 一.安装包下载 首先下载必要的安装包: 1.SQLServe ...